123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import inspect
- import copy
- import numpy as np
- import paddlers.transforms as T
- from testing_utils import CpuCommonTest
- from data import build_input_from_file
- __all__ = ['TestTransform', 'TestCompose', 'TestArrange']
- WHITE_LIST = []
- def _add_op_tests(cls):
- """
- Automatically patch testing functions for transform operators.
- """
- for op_name in T.operators.__all__:
- op_class = getattr(T.operators, op_name)
- if isinstance(op_class, type) and issubclass(op_class,
- T.operators.Transform):
- if op_class is T.DecodeImg or op_class in WHITE_LIST or op_name in WHITE_LIST:
- continue
- attr_name = 'test_' + op_name
- if hasattr(cls, attr_name):
- continue
- # If the operator cannot be initialized with default parameters, skip it.
- for key, param in inspect.signature(
- op_class.__init__).parameters.items():
- if key == 'self':
- continue
- if param.default is param.empty:
- break
- else:
- filter_ = OP2FILTER.get(op_name, None)
- setattr(
- cls, attr_name, make_test_func(
- op_class, filter_=filter_))
- return cls
- def make_test_func(op_class,
- *args,
- in_hook=None,
- out_hook=None,
- filter_=None,
- **kwargs):
- def _test_func(self):
- op = op_class(*args, **kwargs)
- decoder = T.DecodeImg()
- inputs = map(decoder, copy.deepcopy(self.inputs))
- for i, input_ in enumerate(inputs):
- if filter_ is not None:
- input_ = filter_(input_)
- with self.subTest(i=i):
- for sample in input_:
- if in_hook:
- sample = in_hook(sample)
- sample = op(sample)
- if out_hook:
- sample = out_hook(sample)
- return _test_func
- class _InputFilter(object):
- def __init__(self, conds):
- self.conds = conds
- def __call__(self, samples):
- for sample in samples:
- for cond in self.conds:
- if cond(sample):
- yield sample
- def __or__(self, filter):
- return _InputFilter(self.conds + filter.conds)
- def __and__(self, filter):
- return _InputFilter(
- [cond for cond in self.conds if cond in filter.conds])
- def get_sample(self, input):
- return input[0]
- def _is_optical(sample):
- return sample['image'].shape[2] == 3
- def _is_sar(sample):
- return sample['image'].shape[2] == 1
- def _is_multispectral(sample):
- return sample['image'].shape[2] > 3
- def _is_mt(sample):
- return 'image2' in sample
- def _is_seg(sample):
- return 'mask' in sample and 'image2' not in sample
- def _is_det(sample):
- return 'gt_bbox' in sample or 'gt_poly' in sample
- def _is_clas(sample):
- return 'label' in sample
- _filter_only_optical = _InputFilter([_is_optical])
- _filter_only_sar = _InputFilter([_is_sar])
- _filter_only_multispectral = _InputFilter([_is_multispectral])
- _filter_no_multispectral = _filter_only_optical | _filter_only_sar
- _filter_no_sar = _filter_only_optical | _filter_only_multispectral
- _filter_no_optical = _filter_only_sar | _filter_only_multispectral
- _filter_only_mt = _InputFilter([_is_mt])
- _filter_no_det = _InputFilter([_is_seg, _is_clas, _is_mt])
- OP2FILTER = {
- 'RandomSwap': _filter_only_mt,
- 'SelectBand': _filter_no_sar,
- 'Dehaze': _filter_only_optical,
- 'Normalize': _filter_only_optical,
- 'RandomDistort': _filter_only_optical
- }
- @_add_op_tests
- class TestTransform(CpuCommonTest):
- def setUp(self):
- self.inputs = [
- build_input_from_file(
- "data/ssst/test_optical_clas.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_sar_clas.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_multispectral_clas.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_optical_seg.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_sar_seg.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_multispectral_seg.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssst/test_optical_det.txt",
- prefix="./data/ssst",
- label_list="data/ssst/labels_det.txt"),
- build_input_from_file(
- "data/ssst/test_sar_det.txt",
- prefix="./data/ssst",
- label_list="data/ssst/labels_det.txt"),
- build_input_from_file(
- "data/ssst/test_multispectral_det.txt",
- prefix="./data/ssst",
- label_list="data/ssst/labels_det.txt"),
- build_input_from_file(
- "data/ssst/test_det_coco.txt",
- prefix="./data/ssst"),
- build_input_from_file(
- "data/ssmt/test_mixed_binary.txt",
- prefix="./data/ssmt"),
- build_input_from_file(
- "data/ssmt/test_mixed_multiclass.txt",
- prefix="./data/ssmt"),
- build_input_from_file(
- "data/ssmt/test_mixed_multitask.txt",
- prefix="./data/ssmt")
- ] # yapf: disable
- def test_DecodeImg(self):
- decoder = T.DecodeImg(to_rgb=True)
- for i, input in enumerate(self.inputs):
- with self.subTest(i=i):
- for sample in input:
- sample = decoder(sample)
- # Check type
- self.assertIsInstance(sample['image'], np.ndarray)
- if 'mask' in sample:
- self.assertIsInstance(sample['mask'], np.ndarray)
- if 'aux_masks' in sample:
- for aux_mask in sample['aux_masks']:
- self.assertIsInstance(aux_mask, np.ndarray)
- # TODO: Check dtype
- def test_Resize(self):
- TARGET_SIZE = (128, 128)
- def _in_hook(sample):
- self.image_shape = sample['image'].shape
- if 'mask' in sample:
- self.mask_shape = sample['mask'].shape
- self.mask_values = set(sample['mask'].ravel())
- if 'aux_masks' in sample:
- self.aux_mask_shapes = [
- aux_mask.shape for aux_mask in sample['aux_masks']
- ]
- self.aux_mask_values = [
- set(aux_mask.ravel()) for aux_mask in sample['aux_masks']
- ]
- return sample
- def _out_hook_not_keep_ratio(sample):
- self.check_output_equal(sample['image'].shape[:2], TARGET_SIZE)
- if 'image2' in sample:
- self.check_output_equal(sample['image2'].shape[:2], TARGET_SIZE)
- if 'mask' in sample:
- self.check_output_equal(sample['mask'].shape[:2], TARGET_SIZE)
- self.assertLessEqual(
- set(sample['mask'].ravel()), self.mask_values)
- if 'aux_masks' in sample:
- for aux_mask in sample['aux_masks']:
- self.check_output_equal(aux_mask.shape[:2], TARGET_SIZE)
- for aux_mask, amv in zip(sample['aux_masks'],
- self.aux_mask_values):
- self.assertLessEqual(set(aux_mask.ravel()), amv)
- # TODO: Test gt_bbox and gt_poly
- return sample
- def _out_hook_keep_ratio(sample):
- def __check_ratio(shape1, shape2):
- self.check_output_equal(shape1[0] / shape1[1],
- shape2[0] / shape2[1])
- __check_ratio(sample['image'].shape, self.image_shape)
- if 'image2' in sample:
- __check_ratio(sample['image2'].shape, self.image_shape)
- if 'mask' in sample:
- __check_ratio(sample['mask'].shape, self.mask_shape)
- if 'aux_masks' in sample:
- for aux_mask, ori_aux_mask_shape in zip(sample['aux_masks'],
- self.aux_mask_shapes):
- __check_ratio(aux_mask.shape, ori_aux_mask_shape)
- # TODO: Test gt_bbox and gt_poly
- return sample
- test_func_not_keep_ratio = make_test_func(
- T.Resize,
- in_hook=_in_hook,
- out_hook=_out_hook_not_keep_ratio,
- target_size=TARGET_SIZE,
- keep_ratio=False)
- test_func_not_keep_ratio(self)
- test_func_keep_ratio = make_test_func(
- T.Resize,
- in_hook=_in_hook,
- out_hook=_out_hook_keep_ratio,
- target_size=TARGET_SIZE,
- keep_ratio=True)
- test_func_keep_ratio(self)
- def test_RandomFlipOrRotate(self):
- def _in_hook(sample):
- if 'image2' in sample:
- self.im_diff = (
- sample['image'] - sample['image2']).astype('float64')
- elif 'mask' in sample:
- self.im_diff = (
- sample['image'][..., 0] - sample['mask']).astype('float64')
- return sample
- def _out_hook(sample):
- im_diff = None
- if 'image2' in sample:
- im_diff = (sample['image'] - sample['image2']).astype('float64')
- elif 'mask' in sample:
- im_diff = (
- sample['image'][..., 0] - sample['mask']).astype('float64')
- if im_diff is not None:
- self.check_output_equal(im_diff.max(), self.im_diff.max())
- self.check_output_equal(im_diff.min(), self.im_diff.min())
- return sample
- test_func = make_test_func(
- T.RandomFlipOrRotate,
- in_hook=_in_hook,
- out_hook=_out_hook,
- filter_=_filter_no_det)
- test_func(self)
- class TestCompose(CpuCommonTest):
- pass
- class TestArrange(CpuCommonTest):
- pass
|