test_cd_models.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from itertools import cycle
  15. import paddlers
  16. from rs_models.test_model import TestModel
  17. class _CDModelAdapter(object):
  18. def __init__(self, cd_model):
  19. super().__init__()
  20. self.cd_model = cd_model
  21. def __call__(self, input):
  22. return self.cd_model(input[0], input[1])
  23. class TestCDModel(TestModel):
  24. EF_MODE = 'None' # Early-fusion strategy
  25. def check_output(self, output, target):
  26. self.assertIsInstance(output, list)
  27. self.check_output_equal(len(output), len(target))
  28. for o, t in zip(output, target):
  29. o = o.numpy()
  30. self.check_output_equal(o.shape[0], t.shape[0])
  31. self.check_output_equal(len(o.shape), 4)
  32. self.check_output_equal(o.shape[2:], t.shape[2:])
  33. def set_inputs(self):
  34. if self.EF_MODE == 'Concat':
  35. # Early-fusion
  36. def _gen_data(specs):
  37. for spec in specs:
  38. c = spec['in_channels'] // 2
  39. assert c * 2 == spec['in_channels']
  40. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  41. elif self.EF_MODE == 'None':
  42. # Late-fusion
  43. def _gen_data(specs):
  44. for spec in specs:
  45. c = spec.get('in_channels', 3)
  46. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  47. else:
  48. raise ValueError
  49. self.inputs = _gen_data(self.specs)
  50. def set_targets(self):
  51. def _gen_data(specs):
  52. for spec in specs:
  53. c = spec.get('num_classes', 2)
  54. yield [self.get_zeros_array(c)]
  55. self.targets = _gen_data(self.specs)
  56. def build_model(self, spec):
  57. model = super().build_model(spec)
  58. return _CDModelAdapter(model)
  59. def convert_to_static(self, model, input):
  60. return super().convert_to_static(model.cd_model, input)
  61. class TestBITModel(TestCDModel):
  62. MODEL_CLASS = paddlers.custom_models.cd.BIT
  63. def set_specs(self):
  64. base_spec = dict(in_channels=3, num_classes=2)
  65. self.specs = [
  66. base_spec,
  67. dict(**base_spec, backbone='resnet34'),
  68. dict(**base_spec, n_stages=3),
  69. dict(**base_spec, enc_depth=4, dec_head_dim=16),
  70. dict(in_channels=4, num_classes=2),
  71. dict(in_channels=3, num_classes=8)
  72. ]
  73. class TestCDNetModel(TestCDModel):
  74. MODEL_CLASS = paddlers.custom_models.cd.CDNet
  75. EF_MODE = 'Concat'
  76. def set_specs(self):
  77. self.specs = [
  78. dict(in_channels=6, num_classes=2),
  79. dict(in_channels=8, num_classes=2),
  80. dict(in_channels=6, num_classes=8)
  81. ]
  82. class TestChangeStarModel(TestCDModel):
  83. MODEL_CLASS = paddlers.custom_models.cd.ChangeStar
  84. def set_specs(self):
  85. self.specs = [
  86. dict(num_classes=2), dict(num_classes=10),
  87. dict(num_classes=2, mid_channels=128, num_convs=2),
  88. dict(num_classes=2, _phase='eval', _stop_grad=True)
  89. ]
  90. def set_targets(self):
  91. # Avoid allocation of large memories
  92. tar_c2 = [self.get_zeros_array(2)] * 4
  93. self.targets = [
  94. tar_c2,
  95. [self.get_zeros_array(10)] * 2 + [self.get_zeros_array(2)] * 2,
  96. tar_c2, [self.get_zeros_array(2)]
  97. ]
  98. class TestDSAMNetModel(TestCDModel):
  99. MODEL_CLASS = paddlers.custom_models.cd.DSAMNet
  100. def set_specs(self):
  101. base_spec = dict(in_channels=3, num_classes=2)
  102. self.specs = [
  103. base_spec,
  104. dict(in_channels=8, num_classes=2),
  105. dict(in_channels=3, num_classes=8),
  106. dict(**base_spec, ca_ratio=4, sa_kernel=5),
  107. dict(**base_spec, _phase='eval', _stop_grad=True)
  108. ]
  109. def set_targets(self):
  110. # Avoid allocation of large memories
  111. tar_c2 = [self.get_zeros_array(2)] * 3
  112. self.targets = [
  113. tar_c2, tar_c2, [self.get_zeros_array(8)] * 3, tar_c2,
  114. [self.get_zeros_array(2)]
  115. ]
  116. class TestDSIFNModel(TestCDModel):
  117. MODEL_CLASS = paddlers.custom_models.cd.DSIFN
  118. def set_specs(self):
  119. self.specs = [
  120. dict(num_classes=2), dict(num_classes=10),
  121. dict(num_classes=2, use_dropout=True),
  122. dict(num_classes=2, _phase='eval', _stop_grad=True)
  123. ]
  124. def set_targets(self):
  125. # Avoid allocation of large memories
  126. tar_c2 = [self.get_zeros_array(2)] * 5
  127. self.targets = [
  128. tar_c2, [self.get_zeros_array(10)] * 5, tar_c2,
  129. [self.get_zeros_array(2)]
  130. ]
  131. class TestFCEarlyFusionModel(TestCDModel):
  132. MODEL_CLASS = paddlers.custom_models.cd.FCEarlyFusion
  133. EF_MODE = 'Concat'
  134. def set_specs(self):
  135. self.specs = [
  136. dict(in_channels=6, num_classes=2),
  137. dict(in_channels=8, num_classes=2),
  138. dict(in_channels=6, num_classes=8),
  139. dict(in_channels=6, num_classes=2, use_dropout=True)
  140. ]
  141. class TestFCSiamConcModel(TestCDModel):
  142. MODEL_CLASS = paddlers.custom_models.cd.FCSiamConc
  143. def set_specs(self):
  144. self.specs = [
  145. dict(in_channels=3, num_classes=2),
  146. dict(in_channels=8, num_classes=2),
  147. dict(in_channels=3, num_classes=8),
  148. dict(in_channels=3, num_classes=2, use_dropout=True)
  149. ]
  150. class TestFCSiamDiffModel(TestCDModel):
  151. MODEL_CLASS = paddlers.custom_models.cd.FCSiamDiff
  152. def set_specs(self):
  153. self.specs = [
  154. dict(in_channels=3, num_classes=2),
  155. dict(in_channels=8, num_classes=2),
  156. dict(in_channels=3, num_classes=8),
  157. dict(in_channels=3, num_classes=2, use_dropout=True)
  158. ]
  159. class TestSNUNetModel(TestCDModel):
  160. MODEL_CLASS = paddlers.custom_models.cd.SNUNet
  161. def set_specs(self):
  162. self.specs = [
  163. dict(in_channels=3, num_classes=2),
  164. dict(in_channels=8, num_classes=2),
  165. dict(in_channels=3, num_classes=8),
  166. dict(in_channels=3, num_classes=2, width=64)
  167. ]
  168. class TestSTANetModel(TestCDModel):
  169. MODEL_CLASS = paddlers.custom_models.cd.STANet
  170. def set_specs(self):
  171. base_spec = dict(in_channels=3, num_classes=2)
  172. self.specs = [
  173. base_spec,
  174. dict(in_channels=8, num_classes=2),
  175. dict(in_channels=3, num_classes=8),
  176. dict(**base_spec, att_type='PAM'),
  177. dict(**base_spec, ds_factor=4)
  178. ]