123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- '''
- @File Description:
- # 统计json文件images信息,生成统计结果csv,同时生成图像shape、图像shape比例的二维分布图
- python ./coco_tools/json_ImgSta.py \
- --json_path=./annotations/instances_val2017.json \
- --csv_path=./img_sta/images.csv \
- --png_shape_path=./img_sta/images_shape.png \
- --png_shapeRate_path=./img_sta/images_shapeRate.png
- '''
- import json
- import argparse
- import os.path
- import pandas as pd
- import seaborn as sns
- import matplotlib.pyplot as plt
- def check_dir(check_path,show=True):
- if os.path.isdir(check_path):
- check_directory = check_path
- else:
- check_directory = os.path.dirname(check_path)
- if not os.path.exists(check_directory):
- os.makedirs(check_directory)
- if show:
- print('make dir:',check_directory)
- def js_img_sta(js_path, csv_path, png_shape_path, png_shapeRate_path, image_keyname):
- print('json read...\n')
- with open(js_path, 'r') as load_f:
- data = json.load(load_f)
- df_img = pd.DataFrame(data[image_keyname])
- if png_shape_path is not None:
- check_dir(png_shape_path)
- sns.jointplot('height', 'width', data=df_img, kind='hex')
- plt.savefig(png_shape_path)
- plt.close()
- print('png save to', png_shape_path)
- if png_shapeRate_path is not None:
- check_dir(png_shapeRate_path)
- df_img['shape_rate'] = (df_img['width'] / df_img['height']).round(1)
- df_img['shape_rate'].value_counts().sort_index().plot(kind='bar', title='images shape rate')
- plt.savefig(png_shapeRate_path)
- plt.close()
- print('png save to', png_shapeRate_path)
- if csv_path is not None:
- check_dir(csv_path)
- df_img.to_csv(csv_path)
- print('csv save to', csv_path)
- def get_args():
- parser = argparse.ArgumentParser(description='Json Images Infomation Statistic')
- # parameters
- parser.add_argument('--json_path', type=str,
- help='json path to statistic images information')
- parser.add_argument('--csv_path', type=str, default=None,
- help='csv path to save statistic images information, default None, do not save')
- parser.add_argument('--png_shape_path', type=str, default=None,
- help='png path to save statistic images shape information, default None, do not save')
- parser.add_argument('--png_shapeRate_path', type=str, default=None,
- help='png path to save statistic images shape rate information, default None, do not save')
- parser.add_argument('--image_keyname', type=str, default='images',
- help='image key name in json, default images')
- parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
- help='Args_show(default: True), if True, show args info')
- args = parser.parse_args()
- if args.Args_show:
- print('Args'.center(100, '-'))
- for k, v in vars(args).items():
- print('%s = %s' % (k, v))
- print()
- return args
- if __name__ == '__main__':
- args = get_args()
- js_img_sta(args.json_path, args.csv_path, args.png_shape_path, args.png_shapeRate_path, args.image_keyname)
|