12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- import copy
- from .base import BaseDataset
- from paddlers.utils import logging, get_encoding, norm_path, is_pic
- class SegDataset(BaseDataset):
- """
- Dataset for semantic segmentation tasks.
- Args:
- data_dir (str): Root directory of the dataset.
- file_list (str): Path of the file that contains relative paths of images and annotation files.
- transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply.
- label_list (str|None, optional): Path of the file that contains the category names. Defaults to None.
- num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto',
- the number of workers will be automatically determined according to the number of CPU cores: If
- there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half
- the number of CPU cores. Defaults: 'auto'.
- shuffle (bool, optional): Whether to shuffle the samples. Defaults to False.
- """
- def __init__(self,
- data_dir,
- file_list,
- transforms,
- label_list=None,
- num_workers='auto',
- shuffle=False):
- super(SegDataset, self).__init__(data_dir, label_list, transforms,
- num_workers, shuffle)
- # TODO batch padding
- self.batch_transforms = None
- self.file_list = list()
- self.labels = list()
- # TODO:非None时,让用户跳转数据集分析生成label_list
- # 不要在此处分析label file
- if label_list is not None:
- with open(label_list, encoding=get_encoding(label_list)) as f:
- for line in f:
- item = line.strip()
- self.labels.append(item)
- with open(file_list, encoding=get_encoding(file_list)) as f:
- for line in f:
- items = line.strip().split()
- if len(items) > 2:
- raise ValueError(
- "A space is defined as the delimiter to separate the image and label path, " \
- "so the space cannot be in the image or label path, but the line[{}] of " \
- " file_list[{}] has a space in the image or label path.".format(line, file_list))
- items[0] = norm_path(items[0])
- items[1] = norm_path(items[1])
- full_path_im = osp.join(data_dir, items[0])
- full_path_label = osp.join(data_dir, items[1])
- if not is_pic(full_path_im) or not is_pic(full_path_label):
- continue
- if not osp.exists(full_path_im):
- raise IOError('Image file {} does not exist!'.format(
- full_path_im))
- if not osp.exists(full_path_label):
- raise IOError('Label file {} does not exist!'.format(
- full_path_label))
- self.file_list.append({
- 'image': full_path_im,
- 'mask': full_path_label
- })
- self.num_samples = len(self.file_list)
- logging.info("{} samples in file {}".format(
- len(self.file_list), file_list))
- def __len__(self):
- return len(self.file_list)
|