123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import collections
- import datetime
- import numpy as np
- class SmoothedValue(object):
- """
- Track a series of values and provide access to smoothed values over window.
- """
- def __init__(self, window_size=20):
- if window_size is None:
- self.deque = list()
- else:
- self.deque = collections.deque(maxlen=window_size)
- def update(self, value):
- self.deque.append(value)
- def avg(self):
- return np.mean(self.deque)
- class TrainingStats(object):
- def __init__(self, window_size=None, delimiter=', '):
- self.meters = None
- self.window_size = window_size
- self.delimiter = delimiter
- def update(self, stats):
- if self.meters is None:
- self.meters = {
- k: SmoothedValue(self.window_size)
- for k in stats.keys()
- }
- for k, v in self.meters.items():
- v.update(stats[k].numpy())
- def get(self, extras=None):
- stats = collections.OrderedDict()
- if extras:
- for k, v in extras.items():
- stats[k] = v
- for k, v in self.meters.items():
- stats[k] = v.avg()
- return stats
- def log(self, extras=None):
- d = self.get(extras)
- strs = []
- for k, v in d.items():
- strs.append("{}={}".format(k, str(v).format('8.6f')))
- return self.delimiter.join(strs)
|