run_task.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. #!/usr/bin/env python
  2. import os
  3. import random
  4. import numpy as np
  5. import paddle
  6. import paddlers
  7. from paddlers import transforms as T
  8. from config_utils import parse_args, build_objects, CfgNode
  9. def format_cfg(cfg, indent=0):
  10. s = ''
  11. if isinstance(cfg, dict):
  12. for i, (k, v) in enumerate(sorted(cfg.items())):
  13. s += ' ' * indent + str(k) + ': '
  14. if isinstance(v, (dict, list, CfgNode)):
  15. s += '\n' + format_cfg(v, indent=indent + 1)
  16. else:
  17. s += str(v)
  18. if i != len(cfg) - 1:
  19. s += '\n'
  20. elif isinstance(cfg, list):
  21. for i, v in enumerate(cfg):
  22. s += ' ' * indent + '- '
  23. if isinstance(v, (dict, list, CfgNode)):
  24. s += '\n' + format_cfg(v, indent=indent + 1)
  25. else:
  26. s += str(v)
  27. if i != len(cfg) - 1:
  28. s += '\n'
  29. elif isinstance(cfg, CfgNode):
  30. s += ' ' * indent + f"type: {cfg.type}" + '\n'
  31. s += ' ' * indent + f"module: {cfg.module}" + '\n'
  32. s += ' ' * indent + 'args: \n' + format_cfg(cfg.args, indent + 1)
  33. return s
  34. if __name__ == '__main__':
  35. CfgNode.set_context(globals())
  36. cfg = parse_args()
  37. print(format_cfg(cfg))
  38. if cfg['seed'] is not None:
  39. random.seed(cfg['seed'])
  40. np.random.seed(cfg['seed'])
  41. paddle.seed(cfg['seed'])
  42. # Automatically download data
  43. if cfg['download_on']:
  44. paddlers.utils.download_and_decompress(
  45. cfg['download_url'], path=cfg['download_path'])
  46. if not isinstance(cfg['datasets']['eval'].args, dict):
  47. raise TypeError("args of eval dataset must be a dict!")
  48. if cfg['datasets']['eval'].args.get('transforms', None) is not None:
  49. raise ValueError(
  50. "Found key 'transforms' in args of eval dataset and the value is not None."
  51. )
  52. eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T))
  53. # Inplace modification
  54. cfg['datasets']['eval'].args['transforms'] = eval_transforms
  55. if cfg['transforms'].get('eval_batch', None) is not None:
  56. if cfg['datasets']['eval'].args.get('batch_transforms',
  57. None) is not None:
  58. raise ValueError(
  59. "Found key 'batch_transforms' in args of eval dataset and the value is not None."
  60. )
  61. eval_batch_transforms = T.BatchCompose(
  62. build_objects(
  63. cfg['transforms']['eval_batch'], mod=T))
  64. cfg['datasets']['eval'].args['batch_transforms'] = eval_batch_transforms
  65. eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets)
  66. if cfg['cmd'] == 'train':
  67. if not isinstance(cfg['datasets']['train'].args, dict):
  68. raise TypeError("args of train dataset must be a dict!")
  69. if cfg['datasets']['train'].args.get('transforms', None) is not None:
  70. raise ValueError(
  71. "Found key 'transforms' in args of train dataset and the value is not None."
  72. )
  73. train_transforms = T.Compose(
  74. build_objects(
  75. cfg['transforms']['train'], mod=T))
  76. # Inplace modification
  77. cfg['datasets']['train'].args['transforms'] = train_transforms
  78. if cfg['transforms'].get('train_batch', None) is not None:
  79. if cfg['datasets']['train'].args.get('batch_transforms',
  80. None) is not None:
  81. raise ValueError(
  82. "Found key 'batch_transforms' in args of train dataset and the value is not None."
  83. )
  84. train_batch_transforms = T.BatchCompose(
  85. build_objects(
  86. cfg['transforms']['train_batch'], mod=T))
  87. cfg['datasets']['train'].args[
  88. 'batch_transforms'] = train_batch_transforms
  89. train_dataset = build_objects(
  90. cfg['datasets']['train'], mod=paddlers.datasets)
  91. model = build_objects(
  92. cfg['model'], mod=getattr(paddlers.tasks, cfg['task']))
  93. if cfg['optimizer']:
  94. if len(cfg['optimizer'].args) == 0:
  95. cfg['optimizer'].args = {}
  96. if not isinstance(cfg['optimizer'].args, dict):
  97. raise TypeError("args of optimizer must be a dict!")
  98. if cfg['optimizer'].args.get('parameters', None) is not None:
  99. raise ValueError(
  100. "Found key 'parameters' in args of optimizer and the value is not None."
  101. )
  102. cfg['optimizer'].args['parameters'] = model.net.parameters()
  103. optimizer = build_objects(cfg['optimizer'], mod=paddle.optimizer)
  104. else:
  105. optimizer = None
  106. model.train(
  107. num_epochs=cfg['num_epochs'],
  108. train_dataset=train_dataset,
  109. train_batch_size=cfg['train_batch_size'],
  110. eval_dataset=eval_dataset,
  111. optimizer=optimizer,
  112. save_interval_epochs=cfg['save_interval_epochs'],
  113. log_interval_steps=cfg['log_interval_steps'],
  114. save_dir=cfg['save_dir'],
  115. learning_rate=cfg['learning_rate'],
  116. early_stop=cfg['early_stop'],
  117. early_stop_patience=cfg['early_stop_patience'],
  118. use_vdl=cfg['use_vdl'],
  119. resume_checkpoint=cfg['resume_checkpoint'] or None,
  120. **cfg['train'])
  121. elif cfg['cmd'] == 'eval':
  122. model = paddlers.tasks.load_model(cfg['resume_checkpoint'])
  123. res = model.evaluate(eval_dataset)
  124. print(res)