123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 |
- """
- This code is based on https://github.com/AgentMaker/Paddle-Image-Models
- Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
- Apache License [see LICENSE for details]
- """
- import paddle
- import paddle.nn as nn
- __all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"]
- class SELayer(nn.Layer):
- def __init__(self, inplanes, reduction=16):
- super(SELayer, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
- self.fc = nn.Sequential(
- nn.Linear(
- inplanes, inplanes // reduction, bias_attr=False),
- nn.ReLU(),
- nn.Linear(
- inplanes // reduction, inplanes, bias_attr=False),
- nn.Sigmoid(), )
- def forward(self, x):
- b, c, _, _ = x.shape
- y = self.avg_pool(x).reshape((b, c))
- y = self.fc(y).reshape((b, c, 1, 1))
- return x * y.expand_as(x)
- class HS(nn.Layer):
- def __init__(self):
- super(HS, self).__init__()
- self.relu6 = nn.ReLU6()
- def forward(self, inputs):
- return inputs * self.relu6(inputs + 3) / 6
- class Conv(nn.Sequential):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- groups=1,
- activation="ReLU",
- bn_momentum=0.9, ):
- super(Conv, self).__init__()
- self.add_sublayer(
- "norm", nn.BatchNorm2D(
- in_channels, momentum=bn_momentum))
- if activation == "ReLU":
- self.add_sublayer("activation", nn.ReLU())
- elif activation == "HS":
- self.add_sublayer("activation", HS())
- else:
- raise NotImplementedError
- self.add_sublayer(
- "conv",
- nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- bias_attr=False,
- groups=groups, ), )
- def ShuffleLayer(x, groups):
- batchsize, num_channels, height, width = x.shape
- channels_per_group = num_channels // groups
-
- x = x.reshape((batchsize, groups, channels_per_group, height, width))
-
- x = x.transpose((0, 2, 1, 3, 4))
-
- x = x.reshape((batchsize, -1, height, width))
- return x
- def ShuffleLayerTrans(x, groups):
- batchsize, num_channels, height, width = x.shape
- channels_per_group = num_channels // groups
-
- x = x.reshape((batchsize, channels_per_group, groups, height, width))
-
- x = x.transpose((0, 2, 1, 3, 4))
-
- x = x.reshape((batchsize, -1, height, width))
- return x
- class CondenseLGC(nn.Layer):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- groups=1,
- activation="ReLU", ):
- super(CondenseLGC, self).__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.groups = groups
- self.norm = nn.BatchNorm2D(self.in_channels)
- if activation == "ReLU":
- self.activation = nn.ReLU()
- elif activation == "HS":
- self.activation = HS()
- else:
- raise NotImplementedError
- self.conv = nn.Conv2D(
- self.in_channels,
- self.out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=self.groups,
- bias_attr=False, )
- self.register_buffer(
- "index", paddle.zeros(
- (self.in_channels, ), dtype="int64"))
- def forward(self, x):
- x = paddle.index_select(x, self.index, axis=1)
- x = self.norm(x)
- x = self.activation(x)
- x = self.conv(x)
- x = ShuffleLayer(x, self.groups)
- return x
- class CondenseSFR(nn.Layer):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- stride=1,
- padding=0,
- groups=1,
- activation="ReLU", ):
- super(CondenseSFR, self).__init__()
- self.in_channels = in_channels
- self.out_channels = out_channels
- self.groups = groups
- self.norm = nn.BatchNorm2D(self.in_channels)
- if activation == "ReLU":
- self.activation = nn.ReLU()
- elif activation == "HS":
- self.activation = HS()
- else:
- raise NotImplementedError
- self.conv = nn.Conv2D(
- self.in_channels,
- self.out_channels,
- kernel_size=kernel_size,
- padding=padding,
- groups=self.groups,
- bias_attr=False,
- stride=stride, )
- self.register_buffer("index",
- paddle.zeros(
- (self.out_channels, self.out_channels)))
- def forward(self, x):
- x = self.norm(x)
- x = self.activation(x)
- x = ShuffleLayerTrans(x, self.groups)
- x = self.conv(x)
- N, C, H, W = x.shape
- x = x.reshape((N, C, H * W))
- x = x.transpose((0, 2, 1))
-
- x = paddle.matmul(x, self.index)
- x = x.transpose((0, 2, 1))
- x = x.reshape((N, C, H, W))
- return x
- class _SFR_DenseLayer(nn.Layer):
- def __init__(
- self,
- in_channels,
- growth_rate,
- group_1x1,
- group_3x3,
- group_trans,
- bottleneck,
- activation,
- use_se=False, ):
- super(_SFR_DenseLayer, self).__init__()
- self.group_1x1 = group_1x1
- self.group_3x3 = group_3x3
- self.group_trans = group_trans
- self.use_se = use_se
-
- self.conv_1 = CondenseLGC(
- in_channels,
- bottleneck * growth_rate,
- kernel_size=1,
- groups=self.group_1x1,
- activation=activation, )
-
- self.conv_2 = Conv(
- bottleneck * growth_rate,
- growth_rate,
- kernel_size=3,
- padding=1,
- groups=self.group_3x3,
- activation=activation, )
-
- self.sfr = CondenseSFR(
- growth_rate,
- in_channels,
- kernel_size=1,
- groups=self.group_trans,
- activation=activation, )
- if self.use_se:
- self.se = SELayer(inplanes=growth_rate, reduction=1)
- def forward(self, x):
- x_ = x
- x = self.conv_1(x)
- x = self.conv_2(x)
- if self.use_se:
- x = self.se(x)
- sfr_feature = self.sfr(x)
- y = x_ + sfr_feature
- return paddle.concat([y, x], 1)
- class _SFR_DenseBlock(nn.Sequential):
- def __init__(
- self,
- num_layers,
- in_channels,
- growth_rate,
- group_1x1,
- group_3x3,
- group_trans,
- bottleneck,
- activation,
- use_se, ):
- super(_SFR_DenseBlock, self).__init__()
- for i in range(num_layers):
- layer = _SFR_DenseLayer(
- in_channels + i * growth_rate,
- growth_rate,
- group_1x1,
- group_3x3,
- group_trans,
- bottleneck,
- activation,
- use_se, )
- self.add_sublayer("denselayer_%d" % (i + 1), layer)
- class _Transition(nn.Layer):
- def __init__(self):
- super(_Transition, self).__init__()
- self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
- def forward(self, x):
- x = self.pool(x)
- return x
- class CondenseNetV2(nn.Layer):
- def __init__(
- self,
- stages,
- growth,
- HS_start_block,
- SE_start_block,
- fc_channel,
- group_1x1,
- group_3x3,
- group_trans,
- bottleneck,
- last_se_reduction,
- in_channels=3,
- class_num=1000, ):
- super(CondenseNetV2, self).__init__()
- self.stages = stages
- self.growth = growth
- self.in_channels = in_channels
- self.class_num = class_num
- self.last_se_reduction = last_se_reduction
- assert len(self.stages) == len(self.growth)
- self.progress = 0.0
- self.init_stride = 2
- self.pool_size = 7
- self.features = nn.Sequential()
-
- self.num_features = 2 * self.growth[0]
-
- self.features.add_sublayer(
- "init_conv",
- nn.Conv2D(
- in_channels,
- self.num_features,
- kernel_size=3,
- stride=self.init_stride,
- padding=1,
- bias_attr=False, ), )
- for i in range(len(self.stages)):
- activation = "HS" if i >= HS_start_block else "ReLU"
- use_se = True if i >= SE_start_block else False
-
- self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
- activation, use_se)
- self.fc = nn.Linear(self.num_features, fc_channel)
- self.fc_act = HS()
-
- if class_num > 0:
- self.classifier = nn.Linear(fc_channel, class_num)
- self._initialize()
- def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
- activation, use_se):
-
- last = i == len(self.stages) - 1
- block = _SFR_DenseBlock(
- num_layers=self.stages[i],
- in_channels=self.num_features,
- growth_rate=self.growth[i],
- group_1x1=group_1x1,
- group_3x3=group_3x3,
- group_trans=group_trans,
- bottleneck=bottleneck,
- activation=activation,
- use_se=use_se, )
- self.features.add_sublayer("denseblock_%d" % (i + 1), block)
- self.num_features += self.stages[i] * self.growth[i]
- if not last:
- trans = _Transition()
- self.features.add_sublayer("transition_%d" % (i + 1), trans)
- else:
- self.features.add_sublayer("norm_last",
- nn.BatchNorm2D(self.num_features))
- self.features.add_sublayer("relu_last", nn.ReLU())
- self.features.add_sublayer("pool_last",
- nn.AvgPool2D(self.pool_size))
-
- self.features.add_sublayer(
- "se_last",
- SELayer(
- self.num_features, reduction=self.last_se_reduction))
- def forward(self, x):
- features = self.features(x)
- out = features.reshape((features.shape[0], -1))
- out = self.fc(out)
- out = self.fc_act(out)
- if self.class_num > 0:
- out = self.classifier(out)
- return out
- def _initialize(self):
-
- for m in self.sublayers():
- if isinstance(m, nn.Conv2D):
- nn.initializer.KaimingNormal()(m.weight)
- elif isinstance(m, nn.BatchNorm2D):
- nn.initializer.Constant(value=1.0)(m.weight)
- nn.initializer.Constant(value=0.0)(m.bias)
- def CondenseNetV2_a(**kwargs):
- model = CondenseNetV2(
- stages=[1, 1, 4, 6, 8],
- growth=[8, 8, 16, 32, 64],
- HS_start_block=2,
- SE_start_block=3,
- fc_channel=828,
- group_1x1=8,
- group_3x3=8,
- group_trans=8,
- bottleneck=4,
- last_se_reduction=16,
- **kwargs)
- return model
- def CondenseNetV2_b(**kwargs):
- model = CondenseNetV2(
- stages=[2, 4, 6, 8, 6],
- growth=[6, 12, 24, 48, 96],
- HS_start_block=2,
- SE_start_block=3,
- fc_channel=1024,
- group_1x1=6,
- group_3x3=6,
- group_trans=6,
- bottleneck=4,
- last_se_reduction=16,
- **kwargs)
- return model
- def CondenseNetV2_c(**kwargs):
- model = CondenseNetV2(
- stages=[4, 6, 8, 10, 8],
- growth=[8, 16, 32, 64, 128],
- HS_start_block=2,
- SE_start_block=3,
- fc_channel=1024,
- group_1x1=8,
- group_3x3=8,
- group_trans=8,
- bottleneck=4,
- last_se_reduction=16,
- **kwargs)
- return model
|