1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle.nn as nn
- import paddle.nn.functional as F
- def normal_init(param, *args, **kwargs):
- """
- Initialize parameters with a normal distribution.
- Args:
- param (Tensor): The tensor that needs to be initialized.
- Returns:
- The initialized parameters.
- """
- return nn.initializer.Normal(*args, **kwargs)(param)
- def kaiming_normal_init(param, *args, **kwargs):
- """
- Initialize parameters with the Kaiming normal distribution.
- For more information about the Kaiming initialization method, please refer to
- https://arxiv.org/abs/1502.01852
- Args:
- param (Tensor): The tensor that needs to be initialized.
- Returns:
- The initialized parameters.
- """
- return nn.initializer.KaimingNormal(*args, **kwargs)(param)
- def constant_init(param, *args, **kwargs):
- """
- Initialize parameters with constants.
- Args:
- param (Tensor): The tensor that needs to be initialized.
- Returns:
- The initialized parameters.
- """
- return nn.initializer.Constant(*args, **kwargs)(param)
- class KaimingInitMixin:
- """
- A mix-in that provides the Kaiming initialization functionality.
- Examples:
- from paddlers.custom_models.cd.models.param_init import KaimingInitMixin
- class CustomNet(nn.Layer, KaimingInitMixin):
- def __init__(self, num_channels, num_classes):
- super().__init__()
- self.conv = nn.Conv2D(num_channels, num_classes, 3, 1, 0, bias_attr=False)
- self.bn = nn.BatchNorm2D(num_classes)
- self.init_weight()
- """
- def init_weight(self):
- for layer in self.sublayers():
- if isinstance(layer, nn.Conv2D):
- kaiming_normal_init(layer.weight)
- elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
- constant_init(layer.weight, value=1)
- constant_init(layer.bias, value=0)
|