123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- import copy
- import os
- import os.path as osp
- import random
- from collections import OrderedDict
- import numpy as np
- from .base import BaseDataset
- from paddlers.utils import logging, get_encoding, norm_path, is_pic
- from paddlers.transforms import DecodeImg, MixupImage
- from paddlers.tools import YOLOAnchorCluster
- class COCODetection(BaseDataset):
- """读取COCO格式的检测数据集,并对样本进行相应的处理。
- Args:
- data_dir (str): 数据集所在的目录路径。
- image_dir (str): 描述数据集图片文件路径。
- anno_path (str): COCO标注文件路径。
- label_list (str): 描述数据集包含的类别信息文件路径。
- transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。
- num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
- 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
- 一半。
- shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
- allow_empty (bool): 是否加载负样本。默认为False。
- empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。
- """
- def __init__(self,
- data_dir,
- image_dir,
- anno_path,
- label_list,
- transforms=None,
- num_workers='auto',
- shuffle=False,
- allow_empty=False,
- empty_ratio=1.):
- # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- # or matplotlib.backends is imported for the first time
- # pycocotools import matplotlib
- import matplotlib
- matplotlib.use('Agg')
- from pycocotools.coco import COCO
- super(COCODetection, self).__init__(data_dir, label_list, transforms,
- num_workers, shuffle)
- self.data_fields = None
- self.num_max_boxes = 50
- self.use_mix = False
- if self.transforms is not None:
- for op in self.transforms.transforms:
- if isinstance(op, MixupImage):
- self.mixup_op = copy.deepcopy(op)
- self.use_mix = True
- self.num_max_boxes *= 2
- break
- self.batch_transforms = None
- self.allow_empty = allow_empty
- self.empty_ratio = empty_ratio
- self.file_list = list()
- neg_file_list = list()
- self.labels = list()
- annotations = dict()
- annotations['images'] = list()
- annotations['categories'] = list()
- annotations['annotations'] = list()
- cname2cid = OrderedDict()
- label_id = 0
- with open(label_list, 'r', encoding=get_encoding(label_list)) as f:
- for line in f.readlines():
- cname2cid[line.strip()] = label_id
- label_id += 1
- self.labels.append(line.strip())
- for k, v in cname2cid.items():
- annotations['categories'].append({
- 'supercategory': 'component',
- 'id': v + 1,
- 'name': k
- })
- anno_path = norm_path(os.path.join(self.data_dir, anno_path))
- image_dir = norm_path(os.path.join(self.data_dir, image_dir))
- assert anno_path.endswith('.json'), \
- 'invalid coco annotation file: ' + anno_path
- from pycocotools.coco import COCO
- coco = COCO(anno_path)
- img_ids = coco.getImgIds()
- img_ids.sort()
- cat_ids = coco.getCatIds()
- ct = 0
- catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
- cname2cid = dict({
- coco.loadCats(catid)[0]['name']: clsid
- for catid, clsid in catid2clsid.items()
- })
- for img_id in img_ids:
- img_anno = coco.loadImgs([img_id])[0]
- im_fname = img_anno['file_name']
- im_w = float(img_anno['width'])
- im_h = float(img_anno['height'])
- im_path = os.path.join(image_dir,
- im_fname) if image_dir else im_fname
- if not os.path.exists(im_path):
- logging.warning('Illegal image file: {}, and it will be '
- 'ignored'.format(im_path))
- continue
- if im_w < 0 or im_h < 0:
- logging.warning(
- 'Illegal width: {} or height: {} in annotation, '
- 'and im_id: {} will be ignored'.format(im_w, im_h, img_id))
- continue
- im_info = {
- 'image': im_path,
- 'im_id': np.array([img_id]),
- 'image_shape': np.array(
- [im_h, im_w], dtype=np.int32)
- }
- ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
- instances = coco.loadAnns(ins_anno_ids)
- is_crowds = []
- gt_classes = []
- gt_bboxs = []
- gt_scores = []
- difficults = []
- for inst in instances:
- # check gt bbox
- if inst.get('ignore', False):
- continue
- if 'bbox' not in inst.keys():
- continue
- else:
- if not any(np.array(inst['bbox'])):
- continue
- # read box
- x1, y1, box_w, box_h = inst['bbox']
- x2 = x1 + box_w
- y2 = y1 + box_h
- eps = 1e-5
- if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
- inst['clean_bbox'] = [
- round(float(x), 3) for x in [x1, y1, x2, y2]
- ]
- else:
- logging.warning(
- 'Found an invalid bbox in annotations: im_id: {}, '
- 'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
- img_id, float(inst['area']), x1, y1, x2, y2))
- is_crowds.append([inst['iscrowd']])
- gt_classes.append([inst['category_id']])
- gt_bboxs.append(inst['clean_bbox'])
- gt_scores.append([1.])
- difficults.append([0])
- annotations['annotations'].append({
- 'iscrowd': inst['iscrowd'],
- 'image_id': int(inst['image_id']),
- 'bbox': inst['clean_bbox'],
- 'area': inst['area'],
- 'category_id': inst['category_id'],
- 'id': inst['id'],
- 'difficult': 0
- })
- label_info = {
- 'is_crowd': np.array(is_crowds),
- 'gt_class': np.array(gt_classes),
- 'gt_bbox': np.array(gt_bboxs).astype(np.float32),
- 'gt_score': np.array(gt_scores).astype(np.float32),
- 'difficult': np.array(difficults),
- }
- if label_info['gt_bbox'].size > 0:
- self.file_list.append({ ** im_info, ** label_info})
- annotations['images'].append({
- 'height': im_h,
- 'width': im_w,
- 'id': int(im_info['im_id']),
- 'file_name': osp.split(im_info['image'])[1]
- })
- else:
- neg_file_list.append({ ** im_info, ** label_info})
- ct += 1
- if self.use_mix:
- self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances))
- else:
- self.num_max_boxes = max(self.num_max_boxes, len(instances))
- if not ct:
- logging.error(
- "No coco record found in %s' % (file_list)", exit=True)
- self.pos_num = len(self.file_list)
- if self.allow_empty and neg_file_list:
- self.file_list += self._sample_empty(neg_file_list)
- logging.info(
- "{} samples in file {}, including {} positive samples and {} negative samples.".
- format(
- len(self.file_list), anno_path, self.pos_num,
- len(self.file_list) - self.pos_num))
- self.num_samples = len(self.file_list)
- self.coco_gt = COCO()
- self.coco_gt.dataset = annotations
- self.coco_gt.createIndex()
- self._epoch = 0
- def __getitem__(self, idx):
- sample = copy.deepcopy(self.file_list[idx])
- if self.data_fields is not None:
- sample = {k: sample[k] for k in self.data_fields}
- if self.use_mix and (self.mixup_op.mixup_epoch == -1 or
- self._epoch < self.mixup_op.mixup_epoch):
- if self.num_samples > 1:
- mix_idx = random.randint(1, self.num_samples - 1)
- mix_pos = (mix_idx + idx) % self.num_samples
- else:
- mix_pos = 0
- sample_mix = copy.deepcopy(self.file_list[mix_pos])
- if self.data_fields is not None:
- sample_mix = {k: sample_mix[k] for k in self.data_fields}
- sample = self.mixup_op(sample=[
- DecodeImg(to_rgb=False)(sample),
- DecodeImg(to_rgb=False)(sample_mix)
- ])
- sample = self.transforms(sample)
- return sample
- def __len__(self):
- return self.num_samples
- def set_epoch(self, epoch_id):
- self._epoch = epoch_id
- def cluster_yolo_anchor(self,
- num_anchors,
- image_size,
- cache=True,
- cache_path=None,
- iters=300,
- gen_iters=1000,
- thresh=.25):
- """
- Cluster YOLO anchors.
- Reference:
- https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
- Args:
- num_anchors (int): number of clusters
- image_size (list or int): [h, w], being an int means image height and image width are the same.
- cache (bool): whether using cache
- cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset.
- iters (int, optional): iters of kmeans algorithm
- gen_iters (int, optional): iters of genetic algorithm
- threshold (float, optional): anchor scale threshold
- verbose (bool, optional): whether print results
- """
- if cache_path is None:
- cache_path = self.data_dir
- cluster = YOLOAnchorCluster(
- num_anchors=num_anchors,
- dataset=self,
- image_size=image_size,
- cache=cache,
- cache_path=cache_path,
- iters=iters,
- gen_iters=gen_iters,
- thresh=thresh)
- anchors = cluster()
- return anchors
- def add_negative_samples(self, image_dir, empty_ratio=1):
- """将背景图片加入训练
- Args:
- image_dir (str):背景图片所在的文件夹目录。
- empty_ratio (float or None): 用于指定负样本占总样本数的比例。如果为None,保留数据集初始化是设置的`empty_ratio`值,
- 否则更新原有`empty_ratio`值。如果小于0或大于等于1,则保留全部的负样本。默认为1。
- """
- import cv2
- if not osp.isdir(image_dir):
- raise Exception("{} is not a valid image directory.".format(
- image_dir))
- if empty_ratio is not None:
- self.empty_ratio = empty_ratio
- image_list = os.listdir(image_dir)
- max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds()))
- neg_file_list = list()
- for image in image_list:
- if not is_pic(image):
- continue
- gt_bbox = np.zeros((0, 4), dtype=np.float32)
- gt_class = np.zeros((0, 1), dtype=np.int32)
- gt_score = np.zeros((0, 1), dtype=np.float32)
- is_crowd = np.zeros((0, 1), dtype=np.int32)
- difficult = np.zeros((0, 1), dtype=np.int32)
- max_img_id += 1
- im_fname = osp.join(image_dir, image)
- img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
- im_h, im_w, im_c = img_data.shape
- im_info = {
- 'im_id': np.asarray([max_img_id]),
- 'image_shape': np.array(
- [im_h, im_w], dtype=np.int32)
- }
- label_info = {
- 'is_crowd': is_crowd,
- 'gt_class': gt_class,
- 'gt_bbox': gt_bbox,
- 'gt_score': gt_score,
- 'difficult': difficult
- }
- if 'gt_poly' in self.file_list[0]:
- label_info['gt_poly'] = []
- neg_file_list.append({'image': im_fname, ** im_info, ** label_info})
- if neg_file_list:
- self.allow_empty = True
- self.file_list += self._sample_empty(neg_file_list)
- logging.info(
- "{} negative samples added. Dataset contains {} positive samples and {} negative samples.".
- format(
- len(self.file_list) - self.num_samples, self.pos_num,
- len(self.file_list) - self.pos_num))
- self.num_samples = len(self.file_list)
- def _sample_empty(self, neg_file_list):
- if 0. <= self.empty_ratio < 1.:
- import random
- total_num = len(self.file_list)
- neg_num = total_num - self.pos_num
- sample_num = min((total_num * self.empty_ratio - neg_num) //
- (1 - self.empty_ratio), len(neg_file_list))
- return random.sample(neg_file_list, sample_num)
- else:
- return neg_file_list
|