1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import argparse
- from ast import literal_eval
- from paddlers.tasks import load_model
- def get_parser():
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--model_dir',
- '-m',
- type=str,
- default=None,
- help='model directory path')
- parser.add_argument(
- '--save_dir',
- '-s',
- type=str,
- default=None,
- help='path to save inference model')
- parser.add_argument(
- '--fixed_input_shape',
- '-fs',
- type=str,
- default=None,
- help="export inference model with fixed input shape: [w,h] or [n,c,w,h]")
- return parser
- if __name__ == '__main__':
- parser = get_parser()
- args = parser.parse_args()
- # Get input shape
- fixed_input_shape = None
- if args.fixed_input_shape is not None:
- # Try to interpret the string as a list.
- fixed_input_shape = literal_eval(args.fixed_input_shape)
- # Check validaty
- if not isinstance(fixed_input_shape, list):
- raise ValueError(
- "fixed_input_shape should be of None or list type.")
- if len(fixed_input_shape) not in (2, 4):
- raise ValueError(
- "fixed_input_shape contains an incorrect number of elements.")
- if fixed_input_shape[-1] <= 0 or fixed_input_shape[-2] <= 0:
- raise ValueError(
- "Input width and height must be positive integers.")
- if len(fixed_input_shape) == 4 and fixed_input_shape[1] <= 0:
- raise ValueError(
- "The number of input channels must be a positive integer.")
- # Set environment variables
- os.environ['PADDLEX_EXPORT_STAGE'] = 'True'
- os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
- # Load model from directory
- model = load_model(args.model_dir)
- # Do dynamic-to-static cast
- # XXX: Invoke a protected (single underscore) method outside of subclasses.
- model._export_inference_model(args.save_dir, fixed_input_shape)
|