123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import os.path as osp
- from collections import OrderedDict
- from operator import itemgetter
- import numpy as np
- import paddle
- import paddle.nn.functional as F
- from paddle.static import InputSpec
- import paddlers
- import paddlers.models.ppcls as ppcls
- import paddlers.rs_models.clas as cmcls
- import paddlers.utils.logging as logging
- from paddlers.utils import get_single_card_bs, DisablePrint
- from paddlers.models.ppcls.metric import build_metrics
- from paddlers.models import clas_losses
- from paddlers.models.ppcls.data.postprocess import build_postprocess
- from paddlers.utils.checkpoint import cls_pretrain_weights_dict
- from paddlers.transforms import Resize, decode_image
- from .base import BaseModel
- __all__ = [
- "ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C", "CondenseNetV2_b"
- ]
- class BaseClassifier(BaseModel):
- def __init__(self,
- model_name,
- in_channels=3,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- self.init_params = locals()
- if 'with_net' in self.init_params:
- del self.init_params['with_net']
- super(BaseClassifier, self).__init__('classifier')
- if not hasattr(ppcls.arch.backbone, model_name) and \
- not hasattr(cmcls, model_name):
- raise ValueError("ERROR: There is no model named {}.".format(
- model_name))
- self.model_name = model_name
- self.in_channels = in_channels
- self.num_classes = num_classes
- self.use_mixed_loss = use_mixed_loss
- self.metrics = None
- self.losses = losses
- self.labels = None
- self.postprocess = None
- if params.get('with_net', True):
- params.pop('with_net', None)
- self.net = self.build_net(**params)
- self.find_unused_parameters = True
- def build_net(self, **params):
- with paddle.utils.unique_name.guard():
- model = dict(ppcls.arch.backbone.__dict__,
- **cmcls.__dict__)[self.model_name]
- # TODO: Determine whether there is in_channels
- try:
- net = model(
- class_num=self.num_classes,
- in_channels=self.in_channels,
- **params)
- except:
- net = model(class_num=self.num_classes, **params)
- self.in_channels = 3
- return net
- def _build_inference_net(self):
- infer_net = self.net
- infer_net.eval()
- return infer_net
- def _fix_transforms_shape(self, image_shape):
- if hasattr(self, 'test_transforms'):
- if self.test_transforms is not None:
- has_resize_op = False
- resize_op_idx = -1
- normalize_op_idx = len(self.test_transforms.transforms)
- for idx, op in enumerate(self.test_transforms.transforms):
- name = op.__class__.__name__
- if name == 'Normalize':
- normalize_op_idx = idx
- if 'Resize' in name:
- has_resize_op = True
- resize_op_idx = idx
- if not has_resize_op:
- self.test_transforms.transforms.insert(
- normalize_op_idx, Resize(target_size=image_shape))
- else:
- self.test_transforms.transforms[resize_op_idx] = Resize(
- target_size=image_shape)
- def _get_test_inputs(self, image_shape):
- if image_shape is not None:
- if len(image_shape) == 2:
- image_shape = [1, 3] + image_shape
- self._fix_transforms_shape(image_shape[-2:])
- else:
- image_shape = [None, 3, -1, -1]
- self.fixed_input_shape = image_shape
- input_spec = [
- InputSpec(
- shape=image_shape, name='image', dtype='float32')
- ]
- return input_spec
- def run(self, net, inputs, mode):
- net_out = net(inputs[0])
- if mode == 'test':
- return self.postprocess(net_out)
- outputs = OrderedDict()
- label = paddle.to_tensor(inputs[1], dtype="int64")
- if mode == 'eval':
- label = paddle.unsqueeze(label, axis=-1)
- metric_dict = self.metrics(net_out, label)
- outputs['top1'] = metric_dict["top1"]
- outputs['top5'] = metric_dict["top5"]
- if mode == 'train':
- loss_list = self.losses(net_out, label)
- outputs['loss'] = loss_list['loss']
- return outputs
- def default_metric(self):
- default_config = [{"TopkAcc": {"topk": [1, 5]}}]
- return build_metrics(default_config)
- def default_loss(self):
- # TODO: use mixed loss and other loss
- default_config = [{"CELoss": {"weight": 1.0}}]
- return clas_losses.build_loss(default_config)
- def default_optimizer(self,
- parameters,
- learning_rate,
- num_epochs,
- num_steps_each_epoch,
- last_epoch=-1,
- L2_coeff=0.00007):
- decay_step = num_epochs * num_steps_each_epoch
- lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
- learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
- optimizer = paddle.optimizer.Momentum(
- learning_rate=lr_scheduler,
- parameters=parameters,
- momentum=0.9,
- weight_decay=paddle.regularizer.L2Decay(L2_coeff))
- return optimizer
- def default_postprocess(self, class_id_map_file):
- default_config = {
- "name": "Topk",
- "topk": 1,
- "class_id_map_file": class_id_map_file
- }
- return build_postprocess(default_config)
- def build_postprocess_from_labels(self, topk=1):
- label_dict = dict()
- for i, label in enumerate(self.labels):
- label_dict[i] = label
- self.postprocess = build_postprocess({
- "name": "Topk",
- "topk": topk,
- "class_id_map_file": None
- })
- # Add class_id_map from model.yml
- self.postprocess.class_id_map = label_dict
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='IMAGENET',
- learning_rate=0.1,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None):
- """
- Train the model.
- Args:
- num_epochs (int): Number of epochs.
- train_dataset (paddlers.datasets.ClasDataset): Training dataset.
- train_batch_size (int, optional): Total batch size among all cards used in
- training. Defaults to 2.
- eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
- If None, the model will not be evaluated during training process.
- Defaults to None.
- optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
- training. If None, a default optimizer will be used. Defaults to None.
- save_interval_epochs (int, optional): Epoch interval for saving the model.
- Defaults to 1.
- log_interval_steps (int, optional): Step interval for printing training
- information. Defaults to 2.
- save_dir (str, optional): Directory to save the model. Defaults to 'output'.
- pretrain_weights (str|None, optional): None or name/path of pretrained
- weights. If None, no pretrained weights will be loaded.
- Defaults to 'IMAGENET'.
- learning_rate (float, optional): Learning rate for training.
- Defaults to .1.
- lr_decay_power (float, optional): Learning decay power. Defaults to .9.
- early_stop (bool, optional): Whether to adopt early stop strategy.
- Defaults to False.
- early_stop_patience (int, optional): Early stop patience. Defaults to 5.
- use_vdl (bool, optional): Whether to use VisualDL to monitor the training
- process. Defaults to True.
- resume_checkpoint (str|None, optional): Path of the checkpoint to resume
- training from. If None, no training checkpoint will be resumed. At most
- Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
- Defaults to None.
- """
- if self.status == 'Infer':
- logging.error(
- "Exported inference model does not support training.",
- exit=True)
- if pretrain_weights is not None and resume_checkpoint is not None:
- logging.error(
- "`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
- exit=True)
- self.labels = train_dataset.labels
- if self.losses is None:
- self.losses = self.default_loss()
- self.metrics = self.default_metric()
- self.postprocess = self.default_postprocess(train_dataset.label_list)
- if optimizer is None:
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- self.optimizer = self.default_optimizer(
- self.net.parameters(), learning_rate, num_epochs,
- num_steps_each_epoch, lr_decay_power)
- else:
- self.optimizer = optimizer
- if pretrain_weights is not None:
- if not osp.exists(pretrain_weights):
- if self.model_name not in cls_pretrain_weights_dict:
- logging.warning(
- "Path of `pretrain_weights` ('{}') does not exist!".
- format(pretrain_weights))
- pretrain_weights = None
- elif pretrain_weights not in cls_pretrain_weights_dict[
- self.model_name]:
- logging.warning(
- "Path of `pretrain_weights` ('{}') does not exist!".
- format(pretrain_weights))
- pretrain_weights = cls_pretrain_weights_dict[
- self.model_name][0]
- logging.warning(
- "`pretrain_weights` is forcibly set to '{}'. "
- "If you don't want to use pretrained weights, "
- "set `pretrain_weights` to None.".format(
- pretrain_weights))
- else:
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
- logging.error(
- "Invalid pretrained weights. Please specify a .pdparams file.",
- exit=True)
- pretrained_dir = osp.join(save_dir, 'pretrain')
- is_backbone_weights = False
- self.initialize_net(
- pretrain_weights=pretrain_weights,
- save_dir=pretrained_dir,
- resume_checkpoint=resume_checkpoint,
- is_backbone_weights=is_backbone_weights)
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl)
- def quant_aware_train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- learning_rate=0.0001,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None,
- quant_config=None):
- """
- Quantization-aware training.
- Args:
- num_epochs (int): Number of epochs.
- train_dataset (paddlers.datasets.ClasDataset): Training dataset.
- train_batch_size (int, optional): Total batch size among all cards used in
- training. Defaults to 2.
- eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
- If None, the model will not be evaluated during training process.
- Defaults to None.
- optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
- training. If None, a default optimizer will be used. Defaults to None.
- save_interval_epochs (int, optional): Epoch interval for saving the model.
- Defaults to 1.
- log_interval_steps (int, optional): Step interval for printing training
- information. Defaults to 2.
- save_dir (str, optional): Directory to save the model. Defaults to 'output'.
- learning_rate (float, optional): Learning rate for training.
- Defaults to .0001.
- lr_decay_power (float, optional): Learning decay power. Defaults to .9.
- early_stop (bool, optional): Whether to adopt early stop strategy.
- Defaults to False.
- early_stop_patience (int, optional): Early stop patience. Defaults to 5.
- use_vdl (bool, optional): Whether to use VisualDL to monitor the training
- process. Defaults to True.
- quant_config (dict|None, optional): Quantization configuration. If None,
- a default rule of thumb configuration will be used. Defaults to None.
- resume_checkpoint (str|None, optional): Path of the checkpoint to resume
- quantization-aware training from. If None, no training checkpoint will
- be resumed. Defaults to None.
- """
- self._prepare_qat(quant_config)
- self.train(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- optimizer=optimizer,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=None,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl,
- resume_checkpoint=resume_checkpoint)
- def evaluate(self, eval_dataset, batch_size=1, return_details=False):
- """
- Evaluate the model.
- Args:
- eval_dataset (paddlers.datasets.ClasDataset): Evaluation dataset.
- batch_size (int, optional): Total batch size among all cards used for
- evaluation. Defaults to 1.
- return_details (bool, optional): Whether to return evaluation details.
- Defaults to False.
- Returns:
- If `return_details` is False, return collections.OrderedDict with
- key-value pairs:
- {"top1": acc of top1,
- "top5": acc of top5}.
- """
- self._check_transforms(eval_dataset.transforms, 'eval')
- self.net.eval()
- nranks = paddle.distributed.get_world_size()
- local_rank = paddle.distributed.get_rank()
- if nranks > 1:
- # Initialize parallel environment if not done.
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
- ):
- paddle.distributed.init_parallel_env()
- if batch_size > 1:
- logging.warning(
- "Classifier only supports single card evaluation with batch_size=1 "
- "during evaluation, so batch_size is forcibly set to 1.")
- batch_size = 1
- if nranks < 2 or local_rank == 0:
- self.eval_data_loader = self.build_data_loader(
- eval_dataset, batch_size=batch_size, mode='eval')
- logging.info(
- "Start to evaluate(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples, eval_dataset.num_samples))
- top1s = []
- top5s = []
- with paddle.no_grad():
- for step, data in enumerate(self.eval_data_loader):
- data.append(eval_dataset.transforms.transforms)
- outputs = self.run(self.net, data, 'eval')
- top1s.append(outputs["top1"])
- top5s.append(outputs["top5"])
- top1 = np.mean(top1s)
- top5 = np.mean(top5s)
- eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
- if return_details:
- # TODO: Add details
- return eval_metrics, None
- return eval_metrics
- def predict(self, img_file, transforms=None):
- """
- Do inference.
- Args:
- img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
- image data, which also could constitute a list, meaning all images to be
- predicted as a mini-batch.
- transforms (paddlers.transforms.Compose|None, optional): Transforms for
- inputs. If None, the transforms for evaluation process will be used.
- Defaults to None.
- Returns:
- If `img_file` is a string or np.array, the result is a dict with the
- following key-value pairs:
- class_ids_map (np.ndarray): IDs of predicted classes.
- scores_map (np.ndarray): Scores of predicted classes.
- label_names_map (np.ndarray): Names of predicted classes.
-
- If `img_file` is a list, the result is a list composed of dicts with the
- above keys.
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise ValueError("transforms need to be defined, now is None.")
- if transforms is None:
- transforms = self.test_transforms
- if isinstance(img_file, (str, np.ndarray)):
- images = [img_file]
- else:
- images = img_file
- batch_im, batch_origin_shape = self.preprocess(images, transforms,
- self.model_type)
- self.net.eval()
- data = (batch_im, batch_origin_shape, transforms.transforms)
- if self.postprocess is None:
- self.build_postprocess_from_labels()
- outputs = self.run(self.net, data, 'test')
- class_ids = map(itemgetter('class_ids'), outputs)
- scores = map(itemgetter('scores'), outputs)
- label_names = map(itemgetter('label_names'), outputs)
- if isinstance(img_file, list):
- prediction = [{
- 'class_ids_map': l,
- 'scores_map': s,
- 'label_names_map': n,
- } for l, s, n in zip(class_ids, scores, label_names)]
- else:
- prediction = {
- 'class_ids_map': next(class_ids),
- 'scores_map': next(scores),
- 'label_names_map': next(label_names)
- }
- return prediction
- def preprocess(self, images, transforms, to_tensor=True):
- self._check_transforms(transforms, 'test')
- batch_im = list()
- batch_ori_shape = list()
- for im in images:
- if isinstance(im, str):
- im = decode_image(im, read_raw=True)
- ori_shape = im.shape[:2]
- sample = {'image': im}
- im = transforms(sample)
- batch_im.append(im)
- batch_ori_shape.append(ori_shape)
- if to_tensor:
- batch_im = paddle.to_tensor(batch_im)
- else:
- batch_im = np.asarray(batch_im)
- return batch_im, batch_ori_shape
- @staticmethod
- def get_transforms_shape_info(batch_ori_shape, transforms):
- batch_restore_list = list()
- for ori_shape in batch_ori_shape:
- restore_list = list()
- h, w = ori_shape[0], ori_shape[1]
- for op in transforms:
- if op.__class__.__name__ == 'Resize':
- restore_list.append(('resize', (h, w)))
- h, w = op.target_size
- elif op.__class__.__name__ == 'ResizeByShort':
- restore_list.append(('resize', (h, w)))
- im_short_size = min(h, w)
- im_long_size = max(h, w)
- scale = float(op.short_size) / float(im_short_size)
- if 0 < op.max_size < np.round(scale * im_long_size):
- scale = float(op.max_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'ResizeByLong':
- restore_list.append(('resize', (h, w)))
- im_long_size = max(h, w)
- scale = float(op.long_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'Pad':
- if op.target_size:
- target_h, target_w = op.target_size
- else:
- target_h = int(
- (np.ceil(h / op.size_divisor) * op.size_divisor))
- target_w = int(
- (np.ceil(w / op.size_divisor) * op.size_divisor))
- if op.pad_mode == -1:
- offsets = op.offsets
- elif op.pad_mode == 0:
- offsets = [0, 0]
- elif op.pad_mode == 1:
- offsets = [(target_h - h) // 2, (target_w - w) // 2]
- else:
- offsets = [target_h - h, target_w - w]
- restore_list.append(('padding', (h, w), offsets))
- h, w = target_h, target_w
- batch_restore_list.append(restore_list)
- return batch_restore_list
- def _check_transforms(self, transforms, mode):
- super()._check_transforms(transforms, mode)
- if not isinstance(transforms.arrange,
- paddlers.transforms.ArrangeClassifier):
- raise TypeError(
- "`transforms.arrange` must be an ArrangeClassifier object.")
- def build_data_loader(self, dataset, batch_size, mode='train'):
- if dataset.num_samples < batch_size:
- raise ValueError(
- 'The volume of dataset({}) must be larger than batch size({}).'
- .format(dataset.num_samples, batch_size))
- if mode != 'train':
- return paddle.io.DataLoader(
- dataset,
- batch_size=batch_size,
- shuffle=dataset.shuffle,
- drop_last=False,
- collate_fn=dataset.batch_transforms,
- num_workers=dataset.num_workers,
- return_list=True,
- use_shared_memory=False)
- else:
- return super(BaseClassifier, self).build_data_loader(
- dataset, batch_size, mode)
- class ResNet50_vd(BaseClassifier):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- super(ResNet50_vd, self).__init__(
- model_name='ResNet50_vd',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class MobileNetV3_small_x1_0(BaseClassifier):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- super(MobileNetV3_small_x1_0, self).__init__(
- model_name='MobileNetV3_small_x1_0',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class HRNet_W18_C(BaseClassifier):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- super(HRNet_W18_C, self).__init__(
- model_name='HRNet_W18_C',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
- class CondenseNetV2_b(BaseClassifier):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- losses=None,
- **params):
- super(CondenseNetV2_b, self).__init__(
- model_name='CondenseNetV2_b',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- losses=losses,
- **params)
|