unet_multi_channel.py 1.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. import os
  2. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  3. import paddlers as pdrs
  4. from paddlers import transforms as T
  5. # 下载和解压多光谱地块分类数据集
  6. dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip'
  7. pdrs.utils.download_and_decompress(dataset, path='./data')
  8. # 定义训练和验证时的transforms
  9. channel = 10
  10. train_transforms = T.Compose([
  11. T.Resize(target_size=512),
  12. T.RandomHorizontalFlip(),
  13. T.RandomBlur(1),
  14. T.Padding(768),
  15. T.RandomExpand(1.5, prob=1),
  16. T.Resize(target_size=512),
  17. T.Normalize(
  18. mean=[0.5] * channel, std=[0.5] * channel),
  19. ])
  20. eval_transforms = T.Compose([
  21. T.Resize(target_size=512),
  22. T.Normalize(
  23. mean=[0.5] * channel, std=[0.5] * channel),
  24. ])
  25. # 定义训练和验证所用的数据集
  26. train_dataset = pdrs.datasets.SegDataset(
  27. data_dir='./data/remote_sensing_seg',
  28. file_list='./data/remote_sensing_seg/train.txt',
  29. label_list='./data/remote_sensing_seg/labels.txt',
  30. transforms=train_transforms,
  31. num_workers=0,
  32. shuffle=True)
  33. eval_dataset = pdrs.datasets.SegDataset(
  34. data_dir='./data/remote_sensing_seg',
  35. file_list='./data/remote_sensing_seg/val.txt',
  36. label_list='./data/remote_sensing_seg/labels.txt',
  37. transforms=eval_transforms,
  38. num_workers=0,
  39. shuffle=False)
  40. # 初始化模型,并进行训练
  41. # 可使用VisualDL查看训练指标
  42. num_classes = len(train_dataset.labels)
  43. model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes)
  44. model.train(
  45. num_epochs=20,
  46. train_dataset=train_dataset,
  47. train_batch_size=4,
  48. eval_dataset=eval_dataset,
  49. learning_rate=0.01,
  50. save_dir='output/unet',
  51. use_vdl=True)