checkpoint.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import os.path as osp
  16. import glob
  17. import paddle
  18. from . import logging
  19. from .download import download_and_decompress
  20. cls_pretrain_weights_dict = {
  21. 'ResNet50_vd': ['IMAGENET'],
  22. 'MobileNetV3_small_x1_0': ['IMAGENET'],
  23. 'HRNet_W18_C': ['IMAGENET'],
  24. }
  25. seg_pretrain_weights_dict = {
  26. 'UNet': ['CITYSCAPES'],
  27. 'DeepLabV3P': ['CITYSCAPES', 'PascalVOC', 'IMAGENET'],
  28. 'FastSCNN': ['CITYSCAPES'],
  29. 'HRNet': ['CITYSCAPES', 'PascalVOC'],
  30. 'BiSeNetV2': ['CITYSCAPES']
  31. }
  32. det_pretrain_weights_dict = {
  33. 'PicoDet_ESNet_s': ['COCO', 'IMAGENET'],
  34. 'PicoDet_ESNet_m': ['COCO', 'IMAGENET'],
  35. 'PicoDet_ESNet_l': ['COCO', 'IMAGENET'],
  36. 'PicoDet_LCNet': ['COCO', 'IMAGENET'],
  37. 'PicoDet_MobileNetV3': ['COCO', 'IMAGENET'],
  38. 'PicoDet_ResNet18_vd': ['IMAGENET'],
  39. 'YOLOv3_MobileNetV1': ['COCO', 'PascalVOC', 'IMAGENET'],
  40. 'YOLOv3_MobileNetV1_ssld': ['COCO', 'PascalVOC', 'IMAGENET'],
  41. 'YOLOv3_DarkNet53': ['COCO', 'IMAGENET'],
  42. 'YOLOv3_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  43. 'YOLOv3_ResNet34': ['COCO', 'IMAGENET'],
  44. 'YOLOv3_MobileNetV3': ['COCO', 'PascalVOC', 'IMAGENET'],
  45. 'YOLOv3_MobileNetV3_ssld': ['PascalVOC', 'IMAGENET'],
  46. 'FasterRCNN_ResNet50_vd': ['COCO', 'IMAGENET'],
  47. 'FasterRCNN_ResNet50_vd_fpn': ['COCO', 'IMAGENET'],
  48. 'FasterRCNN_ResNet50': ['COCO', 'IMAGENET'],
  49. 'FasterRCNN_ResNet50_fpn': ['COCO', 'IMAGENET'],
  50. 'FasterRCNN_ResNet34_fpn': ['COCO', 'IMAGENET'],
  51. 'FasterRCNN_ResNet34_vd_fpn': ['COCO', 'IMAGENET'],
  52. 'FasterRCNN_ResNet101_fpn': ['COCO', 'IMAGENET'],
  53. 'FasterRCNN_ResNet101_vd_fpn': ['COCO', 'IMAGENET'],
  54. 'FasterRCNN_ResNet50_vd_ssld_fpn': ['COCO', 'IMAGENET'],
  55. 'FasterRCNN_HRNet_W18_fpn': ['COCO', 'IMAGENET'],
  56. 'PPYOLO_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  57. 'PPYOLO_ResNet18_vd': ['COCO', 'IMAGENET'],
  58. 'PPYOLO_MobileNetV3_large': ['COCO', 'IMAGENET'],
  59. 'PPYOLO_MobileNetV3_small': ['COCO', 'IMAGENET'],
  60. 'PPYOLOv2_ResNet50_vd_dcn': ['COCO', 'IMAGENET'],
  61. 'PPYOLOv2_ResNet101_vd_dcn': ['COCO', 'IMAGENET'],
  62. 'PPYOLOTiny_MobileNetV3': ['COCO', 'IMAGENET'],
  63. 'MaskRCNN_ResNet50': ['COCO', 'IMAGENET'],
  64. 'MaskRCNN_ResNet50_fpn': ['COCO', 'IMAGENET'],
  65. 'MaskRCNN_ResNet50_vd_fpn': ['COCO', 'IMAGENET'],
  66. 'MaskRCNN_ResNet50_vd_ssld_fpn': ['COCO', 'IMAGENET'],
  67. 'MaskRCNN_ResNet101_fpn': ['COCO', 'IMAGENET'],
  68. 'MaskRCNN_ResNet101_vd_fpn': ['COCO', 'IMAGENET']
  69. }
  70. cityscapes_weights = {
  71. 'UNet_CITYSCAPES':
  72. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/unet_cityscapes_1024x512_160k/model.pdparams',
  73. 'DeepLabV3P_ResNet50_vd_CITYSCAPES':
  74. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet50_os8_cityscapes_1024x512_80k/model.pdparams',
  75. 'DeepLabV3P_ResNet101_vd_CITYSCAPES':
  76. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/deeplabv3p_resnet101_os8_cityscapes_769x769_80k/model.pdparams',
  77. 'HRNet_HRNet_W18_CITYSCAPES':
  78. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw18_cityscapes_1024x512_80k/model.pdparams',
  79. 'HRNet_HRNet_W48_CITYSCAPES':
  80. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_hrnetw48_cityscapes_1024x512_80k/model.pdparams',
  81. 'BiSeNetV2_CITYSCAPES':
  82. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenet_cityscapes_1024x1024_160k/model.pdparams',
  83. 'FastSCNN_CITYSCAPES':
  84. 'https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fastscnn_cityscapes_1024x1024_160k/model.pdparams'
  85. }
  86. imagenet_weights = {
  87. 'PPLCNet_x0_25_IMAGENET':
  88. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams',
  89. 'PPLCNet_x0_35_IMAGENET':
  90. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams',
  91. 'PPLCNet_x0_5_IMAGENET':
  92. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams',
  93. 'PPLCNet_x0_75_IMAGENET':
  94. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams',
  95. 'PPLCNet_x1_0_IMAGENET':
  96. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams',
  97. 'PPLCNet_x1_5_IMAGENET':
  98. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams',
  99. 'PPLCNet_x2_0_IMAGENET':
  100. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams',
  101. 'PPLCNet_x2_5_IMAGENET':
  102. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams',
  103. 'PPLCNet_x0_5_ssld_IMAGENET':
  104. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams',
  105. 'PPLCNet_x1_0_ssld_IMAGENET':
  106. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams',
  107. 'PPLCNet_x2_5_ssld_IMAGENET':
  108. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams',
  109. 'ResNet18_IMAGENET':
  110. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams',
  111. 'ResNet34_IMAGENET':
  112. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams',
  113. 'ResNet50_IMAGENET':
  114. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams',
  115. 'ResNet101_IMAGENET':
  116. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams',
  117. 'ResNet152_IMAGENET':
  118. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams',
  119. 'ResNet18_vd_IMAGENET':
  120. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams',
  121. 'ResNet34_vd_IMAGENET':
  122. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams',
  123. 'ResNet50_vd_IMAGENET':
  124. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams',
  125. 'ResNet50_vd_ssld_IMAGENET':
  126. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams',
  127. 'ResNet101_vd_IMAGENET':
  128. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams',
  129. 'ResNet101_vd_ssld_IMAGENET':
  130. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams',
  131. 'ResNet152_vd_IMAGENET':
  132. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams',
  133. 'ResNet200_vd_IMAGENET':
  134. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams',
  135. 'MobileNetV1_IMAGENET':
  136. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams',
  137. 'MobileNetV1_x0_25_IMAGENET':
  138. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams',
  139. 'MobileNetV1_x0_5_IMAGENET':
  140. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams',
  141. 'MobileNetV1_x0_75_IMAGENET':
  142. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams',
  143. 'MobileNetV2_IMAGENET':
  144. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams',
  145. 'MobileNetV2_x0_25_IMAGENET':
  146. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams',
  147. 'MobileNetV2_x0_5_IMAGENET':
  148. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams',
  149. 'MobileNetV2_x0_75_IMAGENET':
  150. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams',
  151. 'MobileNetV2_x1_5_IMAGENET':
  152. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams',
  153. 'MobileNetV2_x2_0_IMAGENET':
  154. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams',
  155. 'MobileNetV3_small_x0_35_IMAGENET':
  156. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams',
  157. 'MobileNetV3_small_x0_35_ssld_IMAGENET':
  158. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams',
  159. 'MobileNetV3_small_x0_5_IMAGENET':
  160. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams',
  161. 'MobileNetV3_small_x0_75_IMAGENET':
  162. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams',
  163. 'MobileNetV3_small_x1_0_IMAGENET':
  164. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams',
  165. 'MobileNetV3_small_x1_0_ssld_IMAGENET':
  166. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams',
  167. 'MobileNetV3_small_x1_25_IMAGENET':
  168. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams',
  169. 'MobileNetV3_large_x0_35_IMAGENET':
  170. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams',
  171. 'MobileNetV3_large_x0_5_IMAGENET':
  172. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams',
  173. 'MobileNetV3_large_x0_75_IMAGENET':
  174. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams',
  175. 'MobileNetV3_large_x1_0_IMAGENET':
  176. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams',
  177. 'MobileNetV3_large_x1_25_IMAGENET':
  178. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams',
  179. 'MobileNetV3_large_x1_0_ssld_IMAGENET':
  180. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  181. 'AlexNet_IMAGENET':
  182. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams',
  183. 'DarkNet53_IMAGENET':
  184. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams',
  185. 'DenseNet121_IMAGENET':
  186. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams',
  187. 'DenseNet161_IMAGENET':
  188. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams',
  189. 'DenseNet169_IMAGENET':
  190. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams',
  191. 'DenseNet201_IMAGENET':
  192. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams',
  193. 'DenseNet264_IMAGENET':
  194. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams',
  195. 'HRNet_W18_C_IMAGENET':
  196. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams',
  197. 'HRNet_W30_C_IMAGENET':
  198. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams',
  199. 'HRNet_W32_C_IMAGENET':
  200. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams',
  201. 'HRNet_W40_C_IMAGENET':
  202. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams',
  203. 'HRNet_W44_C_IMAGENET':
  204. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams',
  205. 'HRNet_W48_C_IMAGENET':
  206. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams',
  207. 'HRNet_W64_C_IMAGENET':
  208. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams',
  209. 'Xception41_IMAGENET':
  210. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams',
  211. 'Xception65_IMAGENET':
  212. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams',
  213. 'Xception71_IMAGENET':
  214. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams',
  215. 'ShuffleNetV2_x0_25_IMAGENET':
  216. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams',
  217. 'ShuffleNetV2_x0_33_IMAGENET':
  218. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams',
  219. 'ShuffleNetV2_x0_5_IMAGENET':
  220. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams',
  221. 'ShuffleNetV2_x1_0_IMAGENET':
  222. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams',
  223. 'ShuffleNetV2_x1_5_IMAGENET':
  224. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams',
  225. 'ShuffleNetV2_x2_0_IMAGENET':
  226. 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams',
  227. 'PicoDet_ESNet_s_IMAGENET':
  228. 'https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams',
  229. 'PicoDet_ESNet_m_IMAGENET':
  230. 'https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x1_0_pretrained.pdparams',
  231. 'PicoDet_ESNet_l_IMAGENET':
  232. 'https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x1_25_pretrained.pdparams',
  233. 'PicoDet_LCNet_IMAGENET':
  234. 'https://paddledet.bj.bcebos.com/models/pretrained/LCNet_x1_5_pretrained.pdparams',
  235. 'PicoDet_MobileNetV3_IMAGENET':
  236. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  237. 'PicoDet_ResNet18_vd_IMAGENET':
  238. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams',
  239. 'FasterRCNN_ResNet50_IMAGENET':
  240. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  241. 'FasterRCNN_ResNet50_fpn_IMAGENET':
  242. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  243. 'FasterRCNN_ResNet50_vd_IMAGENET':
  244. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  245. 'FasterRCNN_ResNet50_vd_fpn_IMAGENET':
  246. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  247. 'FasterRCNN_ResNet50_vd_ssld_fpn_IMAGENET':
  248. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams',
  249. 'FasterRCNN_ResNet34_vd_fpn_IMAGENET':
  250. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_vd_pretrained.pdparams',
  251. 'FasterRCNN_ResNet34_fpn_IMAGENET':
  252. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams',
  253. 'FasterRCNN_ResNet101_fpn_IMAGENET':
  254. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams',
  255. 'FasterRCNN_ResNet101_vd_fpn_IMAGENET':
  256. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams',
  257. 'FasterRCNN_HRNet_W18_fpn_IMAGENET':
  258. 'https://paddledet.bj.bcebos.com/models/pretrained/HRNet_W18_C_pretrained.pdparams',
  259. 'YOLOv3_ResNet50_vd_dcn_IMAGENET':
  260. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  261. 'YOLOv3_ResNet34_IMAGENET':
  262. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams',
  263. 'YOLOv3_MobileNetV1_IMAGENET':
  264. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams',
  265. 'YOLOv3_MobileNetV1_ssld_IMAGENET':
  266. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_ssld_pretrained.pdparams',
  267. 'YOLOv3_MobileNetV3_IMAGENET':
  268. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  269. 'YOLOv3_MobileNetV3_ssld_IMAGENET':
  270. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  271. 'YOLOv3_DarkNet53_IMAGENET':
  272. 'https://paddledet.bj.bcebos.com/models/pretrained/DarkNet53_pretrained.pdparams',
  273. 'PPYOLO_ResNet50_vd_dcn_IMAGENET':
  274. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  275. 'PPYOLO_ResNet18_vd_IMAGENET':
  276. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams',
  277. 'PPYOLO_MobileNetV3_large_IMAGENET':
  278. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams',
  279. 'PPYOLO_MobileNetV3_small_IMAGENET':
  280. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams',
  281. 'PPYOLOv2_ResNet50_vd_dcn_IMAGENET':
  282. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_pretrained.pdparams',
  283. 'PPYOLOv2_ResNet101_vd_dcn_IMAGENET':
  284. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_ssld_pretrained.pdparams',
  285. 'PPYOLOTiny_MobileNetV3_IMAGENET':
  286. 'https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams',
  287. 'MaskRCNN_ResNet50_IMAGENET':
  288. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  289. 'MaskRCNN_ResNet50_fpn_IMAGENET':
  290. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams',
  291. 'MaskRCNN_ResNet50_vd_fpn_IMAGENET':
  292. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_pretrained.pdparams',
  293. 'MaskRCNN_ResNet50_vd_ssld_fpn_IMAGENET':
  294. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams',
  295. 'MaskRCNN_ResNet101_fpn_IMAGENET':
  296. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams',
  297. 'MaskRCNN_ResNet101_vd_fpn_IMAGENET':
  298. 'https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams',
  299. 'DeepLabV3P_ResNet50_vd_IMAGENET':
  300. 'https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz',
  301. 'DeepLabV3P_ResNet101_vd_IMAGENET':
  302. 'https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz'
  303. }
  304. pascalvoc_weights = {
  305. 'DeepLabV3P_ResNet50_vd_PascalVOC':
  306. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet50_os8_voc12aug_512x512_40k/model.pdparams',
  307. 'DeepLabV3P_ResNet101_vd_PascalVOC':
  308. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/deeplabv3p_resnet101_os8_voc12aug_512x512_40k/model.pdparams',
  309. 'HRNet_HRNet_W18_PascalVOC':
  310. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/fcn_hrnetw18_voc12aug_512x512_40k/model.pdparams',
  311. 'HRNet_HRNet_W48_PascalVOC':
  312. 'https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/fcn_hrnetw48_voc12aug_512x512_40k/model.pdparams',
  313. 'YOLOv3_MobileNetV1_PascalVOC':
  314. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams',
  315. 'YOLOv3_MobileNetV1_ssld_PascalVOC':
  316. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams',
  317. 'YOLOv3_MobileNetV3_PascalVOC':
  318. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams',
  319. 'YOLOv3_MobileNetV3_ssld_PascalVOC':
  320. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams'
  321. }
  322. coco_weights = {
  323. 'PicoDet_ESNet_s_COCO':
  324. 'https://paddledet.bj.bcebos.com/models/picodet_s_416_coco.pdparams',
  325. 'PicoDet_ESNet_m_COCO':
  326. 'https://paddledet.bj.bcebos.com/models/picodet_m_416_coco.pdparams',
  327. 'PicoDet_ESNet_l_COCO':
  328. 'https://paddledet.bj.bcebos.com/models/picodet_l_640_coco.pdparams',
  329. 'PicoDet_LCNet_COCO':
  330. 'https://paddledet.bj.bcebos.com/models/picodet_lcnet_1_5x_416_coco.pdparams',
  331. 'PicoDet_MobileNetV3_COCO':
  332. 'https://paddledet.bj.bcebos.com/models/picodet_mobilenetv3_large_1x_416_coco.pdparams',
  333. 'YOLOv3_MobileNetV1_COCO':
  334. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams',
  335. 'YOLOv3_MobileNetV1_ssld_COCO':
  336. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams',
  337. 'YOLOv3_DarkNet53_COCO':
  338. 'https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams',
  339. 'YOLOv3_ResNet50_vd_dcn_COCO':
  340. 'https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams',
  341. 'YOLOv3_ResNet34_COCO':
  342. 'https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams',
  343. 'YOLOv3_MobileNetV3_COCO':
  344. 'https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams',
  345. 'FasterRCNN_ResNet50_fpn_COCO':
  346. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams',
  347. 'FasterRCNN_ResNet50_COCO':
  348. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams',
  349. 'FasterRCNN_ResNet50_vd_COCO':
  350. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams',
  351. 'FasterRCNN_ResNet50_vd_fpn_COCO':
  352. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams',
  353. 'FasterRCNN_ResNet50_vd_ssld_fpn_COCO':
  354. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_ssld_fpn_2x_coco.pdparams',
  355. 'FasterRCNN_ResNet34_vd_fpn_COCO':
  356. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams',
  357. 'FasterRCNN_ResNet34_fpn_COCO':
  358. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams',
  359. 'FasterRCNN_ResNet101_fpn_COCO':
  360. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams',
  361. 'FasterRCNN_ResNet101_vd_fpn_COCO':
  362. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams',
  363. 'FasterRCNN_HRNet_W18_fpn_COCO':
  364. 'https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_2x_coco.pdparams',
  365. 'PPYOLO_ResNet50_vd_dcn_COCO':
  366. 'https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams',
  367. 'PPYOLO_ResNet18_vd_COCO':
  368. 'https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams',
  369. 'PPYOLO_MobileNetV3_large_COCO':
  370. 'https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams',
  371. 'PPYOLO_MobileNetV3_small_COCO':
  372. 'https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams',
  373. 'PPYOLOv2_ResNet50_vd_dcn_COCO':
  374. 'https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams',
  375. 'PPYOLOv2_ResNet101_vd_dcn_COCO':
  376. 'https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams',
  377. 'PPYOLOTiny_MobileNetV3_COCO':
  378. 'https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams',
  379. 'MaskRCNN_ResNet50_COCO':
  380. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams',
  381. 'MaskRCNN_ResNet50_fpn_COCO':
  382. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams',
  383. 'MaskRCNN_ResNet50_vd_fpn_COCO':
  384. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams',
  385. 'MaskRCNN_ResNet50_vd_ssld_fpn_COCO':
  386. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams',
  387. 'MaskRCNN_ResNet101_fpn_COCO':
  388. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams',
  389. 'MaskRCNN_ResNet101_vd_fpn_COCO':
  390. 'https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams'
  391. }
  392. def get_pretrain_weights(flag, class_name, save_dir, backbone_name=None):
  393. if flag is None:
  394. return None
  395. elif osp.isdir(flag):
  396. return flag
  397. elif osp.isfile(flag):
  398. return flag
  399. # TODO: check flag
  400. new_save_dir = save_dir
  401. if backbone_name is not None:
  402. weights_key = "{}_{}_{}".format(class_name, backbone_name, flag)
  403. else:
  404. weights_key = "{}_{}".format(class_name, flag)
  405. if flag == 'CITYSCAPES':
  406. url = cityscapes_weights[weights_key]
  407. elif flag == 'IMAGENET':
  408. url = imagenet_weights[weights_key]
  409. elif flag == 'PascalVOC':
  410. url = pascalvoc_weights[weights_key]
  411. elif flag == 'COCO':
  412. url = coco_weights[weights_key]
  413. else:
  414. raise ValueError('Given pretrained weights {} is undefined.'.format(
  415. flag))
  416. fname = download_and_decompress(url, path=new_save_dir)
  417. if osp.isdir(fname):
  418. fname = glob.glob(osp.join(fname, '*.pdparams'))[0]
  419. return fname
  420. def load_pretrain_weights(model, pretrain_weights=None, model_name=None):
  421. if pretrain_weights is not None:
  422. logging.info(
  423. 'Loading pretrained model from {}'.format(pretrain_weights),
  424. use_color=True)
  425. if os.path.exists(pretrain_weights):
  426. param_state_dict = paddle.load(pretrain_weights)
  427. model_state_dict = model.state_dict()
  428. # hack: fit for faster rcnn. Pretrain weights contain prefix of 'backbone'
  429. # while res5 module is located in bbox_head.head. Replace the prefix of
  430. # res5 with 'bbox_head.head' to load pretrain weights correctly.
  431. for k in param_state_dict.keys():
  432. if 'backbone.res5' in k:
  433. new_k = k.replace('backbone', 'bbox_head.head')
  434. if new_k in model_state_dict:
  435. value = param_state_dict.pop(k)
  436. param_state_dict[new_k] = value
  437. num_params_loaded = 0
  438. for k in model_state_dict:
  439. if k not in param_state_dict:
  440. logging.warning("{} is not in pretrained model".format(k))
  441. elif list(param_state_dict[k].shape) != list(model_state_dict[
  442. k].shape):
  443. logging.warning(
  444. "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
  445. .format(k, param_state_dict[k].shape, model_state_dict[
  446. k].shape))
  447. else:
  448. model_state_dict[k] = param_state_dict[k]
  449. num_params_loaded += 1
  450. model.set_state_dict(model_state_dict)
  451. logging.info("There are {}/{} variables loaded into {}.".format(
  452. num_params_loaded, len(model_state_dict), model_name))
  453. else:
  454. raise ValueError('The pretrained model directory is not Found: {}'.
  455. format(pretrain_weights))
  456. else:
  457. logging.info(
  458. 'No pretrained model to load, {} will be trained from scratch.'.
  459. format(model_name))
  460. def load_optimizer(optimizer, state_dict_path):
  461. logging.info("Loading optimizer from {}".format(state_dict_path))
  462. optim_state_dict = paddle.load(state_dict_path)
  463. for key in optimizer.state_dict().keys():
  464. if key not in optim_state_dict.keys():
  465. optim_state_dict[key] = optimizer.state_dict()[key]
  466. if 'last_epoch' in optim_state_dict:
  467. optim_state_dict.pop('last_epoch')
  468. optimizer.set_state_dict(optim_state_dict)
  469. def load_checkpoint(model, optimizer, model_name, checkpoint):
  470. logging.info("Loading checkpoint from {}".format(checkpoint))
  471. load_pretrain_weights(
  472. model,
  473. pretrain_weights=osp.join(checkpoint, 'model.pdparams'),
  474. model_name=model_name)
  475. load_optimizer(
  476. optimizer, state_dict_path=osp.join(checkpoint, "model.pdopt"))