predict_cd.py 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. #!/usr/bin/env python
  2. import argparse
  3. import os
  4. import os.path as osp
  5. import cv2
  6. import paddle
  7. import paddlers
  8. from tqdm import tqdm
  9. import custom_model
  10. import custom_trainer
  11. def read_file_list(file_list, sep=' '):
  12. with open(file_list, 'r') as f:
  13. for line in f:
  14. line = line.strip()
  15. parts = line.split(sep)
  16. yield parts
  17. def parse_args():
  18. parser = argparse.ArgumentParser()
  19. parser.add_argument(
  20. "--model_dir", default=None, type=str, help="Path of saved model.")
  21. parser.add_argument("--data_dir", type=str, help="Path of input dataset.")
  22. parser.add_argument("--file_list", type=str, help="Path of file list.")
  23. parser.add_argument(
  24. "--save_dir",
  25. default='./exp/predict',
  26. type=str,
  27. help="Path of directory to save prediction results.")
  28. parser.add_argument(
  29. "--ext",
  30. default='.png',
  31. type=str,
  32. help="Extension name of the saved image file.")
  33. return parser.parse_args()
  34. if __name__ == '__main__':
  35. args = parse_args()
  36. model = paddlers.tasks.load_model(args.model_dir)
  37. if not osp.exists(args.save_dir):
  38. os.makedirs(args.save_dir)
  39. with paddle.no_grad():
  40. for parts in tqdm(read_file_list(args.file_list)):
  41. im1_path = osp.join(args.data_dir, parts[0])
  42. im2_path = osp.join(args.data_dir, parts[1])
  43. pred = model.predict((im1_path, im2_path))
  44. cm = pred['label_map']
  45. # {0,1} -> {0,255}
  46. cm[cm > 0] = 255
  47. cm = cm.astype('uint8')
  48. if len(parts) > 2:
  49. name = osp.basename(parts[2])
  50. else:
  51. name = osp.basename(im1_path)
  52. name = osp.splitext(name)[0] + args.ext
  53. out_path = osp.join(args.save_dir, name)
  54. cv2.imwrite(out_path, cm)