123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- import sys
- from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
- MODEL_URLS = {
- "Xception41":
- "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams",
- "Xception65":
- "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams",
- "Xception71":
- "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams"
- }
- __all__ = list(MODEL_URLS.keys())
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- groups=1,
- act=None,
- name=None):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- bn_name = "bn_" + name
- self._batch_norm = BatchNorm(
- num_filters,
- act=act,
- param_attr=ParamAttr(name=bn_name + "_scale"),
- bias_attr=ParamAttr(name=bn_name + "_offset"),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class SeparableConv(nn.Layer):
- def __init__(self, input_channels, output_channels, stride=1, name=None):
- super(SeparableConv, self).__init__()
- self._pointwise_conv = ConvBNLayer(
- input_channels, output_channels, 1, name=name + "_sep")
- self._depthwise_conv = ConvBNLayer(
- output_channels,
- output_channels,
- 3,
- stride=stride,
- groups=output_channels,
- name=name + "_dw")
- def forward(self, inputs):
- x = self._pointwise_conv(inputs)
- x = self._depthwise_conv(x)
- return x
- class EntryFlowBottleneckBlock(nn.Layer):
- def __init__(self,
- input_channels,
- output_channels,
- stride=2,
- name=None,
- relu_first=False):
- super(EntryFlowBottleneckBlock, self).__init__()
- self.relu_first = relu_first
- self._short = Conv2D(
- in_channels=input_channels,
- out_channels=output_channels,
- kernel_size=1,
- stride=stride,
- padding=0,
- weight_attr=ParamAttr(name + "_branch1_weights"),
- bias_attr=False)
- self._conv1 = SeparableConv(
- input_channels,
- output_channels,
- stride=1,
- name=name + "_branch2a_weights")
- self._conv2 = SeparableConv(
- output_channels,
- output_channels,
- stride=1,
- name=name + "_branch2b_weights")
- self._pool = MaxPool2D(kernel_size=3, stride=stride, padding=1)
- def forward(self, inputs):
- conv0 = inputs
- short = self._short(inputs)
- if self.relu_first:
- conv0 = F.relu(conv0)
- conv1 = self._conv1(conv0)
- conv2 = F.relu(conv1)
- conv2 = self._conv2(conv2)
- pool = self._pool(conv2)
- return paddle.add(x=short, y=pool)
- class EntryFlow(nn.Layer):
- def __init__(self, block_num=3):
- super(EntryFlow, self).__init__()
- name = "entry_flow"
- self.block_num = block_num
- self._conv1 = ConvBNLayer(
- 3, 32, 3, stride=2, act="relu", name=name + "_conv1")
- self._conv2 = ConvBNLayer(32, 64, 3, act="relu", name=name + "_conv2")
- if block_num == 3:
- self._conv_0 = EntryFlowBottleneckBlock(
- 64, 128, stride=2, name=name + "_0", relu_first=False)
- self._conv_1 = EntryFlowBottleneckBlock(
- 128, 256, stride=2, name=name + "_1", relu_first=True)
- self._conv_2 = EntryFlowBottleneckBlock(
- 256, 728, stride=2, name=name + "_2", relu_first=True)
- elif block_num == 5:
- self._conv_0 = EntryFlowBottleneckBlock(
- 64, 128, stride=2, name=name + "_0", relu_first=False)
- self._conv_1 = EntryFlowBottleneckBlock(
- 128, 256, stride=1, name=name + "_1", relu_first=True)
- self._conv_2 = EntryFlowBottleneckBlock(
- 256, 256, stride=2, name=name + "_2", relu_first=True)
- self._conv_3 = EntryFlowBottleneckBlock(
- 256, 728, stride=1, name=name + "_3", relu_first=True)
- self._conv_4 = EntryFlowBottleneckBlock(
- 728, 728, stride=2, name=name + "_4", relu_first=True)
- else:
- sys.exit(-1)
- def forward(self, inputs):
- x = self._conv1(inputs)
- x = self._conv2(x)
- if self.block_num == 3:
- x = self._conv_0(x)
- x = self._conv_1(x)
- x = self._conv_2(x)
- elif self.block_num == 5:
- x = self._conv_0(x)
- x = self._conv_1(x)
- x = self._conv_2(x)
- x = self._conv_3(x)
- x = self._conv_4(x)
- return x
- class MiddleFlowBottleneckBlock(nn.Layer):
- def __init__(self, input_channels, output_channels, name):
- super(MiddleFlowBottleneckBlock, self).__init__()
- self._conv_0 = SeparableConv(
- input_channels,
- output_channels,
- stride=1,
- name=name + "_branch2a_weights")
- self._conv_1 = SeparableConv(
- output_channels,
- output_channels,
- stride=1,
- name=name + "_branch2b_weights")
- self._conv_2 = SeparableConv(
- output_channels,
- output_channels,
- stride=1,
- name=name + "_branch2c_weights")
- def forward(self, inputs):
- conv0 = F.relu(inputs)
- conv0 = self._conv_0(conv0)
- conv1 = F.relu(conv0)
- conv1 = self._conv_1(conv1)
- conv2 = F.relu(conv1)
- conv2 = self._conv_2(conv2)
- return paddle.add(x=inputs, y=conv2)
- class MiddleFlow(nn.Layer):
- def __init__(self, block_num=8):
- super(MiddleFlow, self).__init__()
- self.block_num = block_num
- self._conv_0 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_0")
- self._conv_1 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_1")
- self._conv_2 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_2")
- self._conv_3 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_3")
- self._conv_4 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_4")
- self._conv_5 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_5")
- self._conv_6 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_6")
- self._conv_7 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_7")
- if block_num == 16:
- self._conv_8 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_8")
- self._conv_9 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_9")
- self._conv_10 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_10")
- self._conv_11 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_11")
- self._conv_12 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_12")
- self._conv_13 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_13")
- self._conv_14 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_14")
- self._conv_15 = MiddleFlowBottleneckBlock(
- 728, 728, name="middle_flow_15")
- def forward(self, inputs):
- x = self._conv_0(inputs)
- x = self._conv_1(x)
- x = self._conv_2(x)
- x = self._conv_3(x)
- x = self._conv_4(x)
- x = self._conv_5(x)
- x = self._conv_6(x)
- x = self._conv_7(x)
- if self.block_num == 16:
- x = self._conv_8(x)
- x = self._conv_9(x)
- x = self._conv_10(x)
- x = self._conv_11(x)
- x = self._conv_12(x)
- x = self._conv_13(x)
- x = self._conv_14(x)
- x = self._conv_15(x)
- return x
- class ExitFlowBottleneckBlock(nn.Layer):
- def __init__(self, input_channels, output_channels1, output_channels2,
- name):
- super(ExitFlowBottleneckBlock, self).__init__()
- self._short = Conv2D(
- in_channels=input_channels,
- out_channels=output_channels2,
- kernel_size=1,
- stride=2,
- padding=0,
- weight_attr=ParamAttr(name + "_branch1_weights"),
- bias_attr=False)
- self._conv_1 = SeparableConv(
- input_channels,
- output_channels1,
- stride=1,
- name=name + "_branch2a_weights")
- self._conv_2 = SeparableConv(
- output_channels1,
- output_channels2,
- stride=1,
- name=name + "_branch2b_weights")
- self._pool = MaxPool2D(kernel_size=3, stride=2, padding=1)
- def forward(self, inputs):
- short = self._short(inputs)
- conv0 = F.relu(inputs)
- conv1 = self._conv_1(conv0)
- conv2 = F.relu(conv1)
- conv2 = self._conv_2(conv2)
- pool = self._pool(conv2)
- return paddle.add(x=short, y=pool)
- class ExitFlow(nn.Layer):
- def __init__(self, class_num):
- super(ExitFlow, self).__init__()
- name = "exit_flow"
- self._conv_0 = ExitFlowBottleneckBlock(
- 728, 728, 1024, name=name + "_1")
- self._conv_1 = SeparableConv(1024, 1536, stride=1, name=name + "_2")
- self._conv_2 = SeparableConv(1536, 2048, stride=1, name=name + "_3")
- self._pool = AdaptiveAvgPool2D(1)
- stdv = 1.0 / math.sqrt(2048 * 1.0)
- self._out = Linear(
- 2048,
- class_num,
- weight_attr=ParamAttr(
- name="fc_weights", initializer=Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(name="fc_offset"))
- def forward(self, inputs):
- conv0 = self._conv_0(inputs)
- conv1 = self._conv_1(conv0)
- conv1 = F.relu(conv1)
- conv2 = self._conv_2(conv1)
- conv2 = F.relu(conv2)
- pool = self._pool(conv2)
- pool = paddle.flatten(pool, start_axis=1, stop_axis=-1)
- out = self._out(pool)
- return out
- class Xception(nn.Layer):
- def __init__(self,
- entry_flow_block_num=3,
- middle_flow_block_num=8,
- class_num=1000):
- super(Xception, self).__init__()
- self.entry_flow_block_num = entry_flow_block_num
- self.middle_flow_block_num = middle_flow_block_num
- self._entry_flow = EntryFlow(entry_flow_block_num)
- self._middle_flow = MiddleFlow(middle_flow_block_num)
- self._exit_flow = ExitFlow(class_num)
- def forward(self, inputs):
- x = self._entry_flow(inputs)
- x = self._middle_flow(x)
- x = self._exit_flow(x)
- return x
- def _load_pretrained(pretrained, model, model_url, use_ssld=False):
- if pretrained is False:
- pass
- elif pretrained is True:
- load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
- elif isinstance(pretrained, str):
- load_dygraph_pretrain(model, pretrained)
- else:
- raise RuntimeError(
- "pretrained type is not available. Please use `string` or `boolean` type."
- )
- def Xception41(pretrained=False, use_ssld=False, **kwargs):
- model = Xception(entry_flow_block_num=3, middle_flow_block_num=8, **kwargs)
- _load_pretrained(
- pretrained, model, MODEL_URLS["Xception41"], use_ssld=use_ssld)
- return model
- def Xception65(pretrained=False, use_ssld=False, **kwargs):
- model = Xception(
- entry_flow_block_num=3, middle_flow_block_num=16, **kwargs)
- _load_pretrained(
- pretrained, model, MODEL_URLS["Xception65"], use_ssld=use_ssld)
- return model
- def Xception71(pretrained=False, use_ssld=False, **kwargs):
- model = Xception(
- entry_flow_block_num=5, middle_flow_block_num=16, **kwargs)
- _load_pretrained(
- pretrained, model, MODEL_URLS["Xception71"], use_ssld=use_ssld)
- return model
|