123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import os.path as osp
- import numpy as np
- import cv2
- from collections import OrderedDict
- import paddle
- import paddle.nn.functional as F
- from paddle.static import InputSpec
- import paddlers.models.ppseg as paddleseg
- import paddlers
- from paddlers.transforms import arrange_transforms
- from paddlers.utils import get_single_card_bs, DisablePrint
- import paddlers.utils.logging as logging
- from .base import BaseModel
- from .utils import seg_metrics as metrics
- from paddlers.utils.checkpoint import seg_pretrain_weights_dict
- from paddlers.transforms import Decode, Resize
- from paddlers.models.ppcd import CDNet
- __all__ = ["CDNet"]
- class BaseChangeDetector(BaseModel):
- def __init__(self,
- model_name,
- num_classes=2,
- use_mixed_loss=False,
- **params):
- self.init_params = locals()
- if 'with_net' in self.init_params:
- del self.init_params['with_net']
- super(BaseChangeDetector, self).__init__('changedetector')
- if model_name not in __all__:
- raise Exception("ERROR: There's no model named {}.".format(
- model_name))
- self.model_name = model_name
- self.num_classes = num_classes
- self.use_mixed_loss = use_mixed_loss
- self.losses = None
- self.labels = None
- if params.get('with_net', True):
- params.pop('with_net', None)
- self.net = self.build_net(**params)
- self.find_unused_parameters = True
- def build_net(self, **params):
- # TODO: add other model
- net = CDNet(num_classes=self.num_classes, **params)
- return net
- def _fix_transforms_shape(self, image_shape):
- if hasattr(self, 'test_transforms'):
- if self.test_transforms is not None:
- has_resize_op = False
- resize_op_idx = -1
- normalize_op_idx = len(self.test_transforms.transforms)
- for idx, op in enumerate(self.test_transforms.transforms):
- name = op.__class__.__name__
- if name == 'Normalize':
- normalize_op_idx = idx
- if 'Resize' in name:
- has_resize_op = True
- resize_op_idx = idx
- if not has_resize_op:
- self.test_transforms.transforms.insert(
- normalize_op_idx, Resize(target_size=image_shape))
- else:
- self.test_transforms.transforms[resize_op_idx] = Resize(
- target_size=image_shape)
- def _get_test_inputs(self, image_shape):
- if image_shape is not None:
- if len(image_shape) == 2:
- image_shape = [1, 3] + image_shape
- self._fix_transforms_shape(image_shape[-2:])
- else:
- image_shape = [None, 3, -1, -1]
- self.fixed_input_shape = image_shape
- input_spec = [
- InputSpec(
- shape=image_shape, name='image', dtype='float32')
- ]
- return input_spec
- def run(self, net, inputs, mode):
- net_out = net(inputs[0], inputs[1])
- logit = net_out[0]
- outputs = OrderedDict()
- if mode == 'test':
- origin_shape = inputs[2]
- if self.status == 'Infer':
- label_map_list, score_map_list = self._postprocess(
- net_out, origin_shape, transforms=inputs[3])
- else:
- logit_list = self._postprocess(
- logit, origin_shape, transforms=inputs[3])
- label_map_list = []
- score_map_list = []
- for logit in logit_list:
- logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
- label_map_list.append(
- paddle.argmax(
- logit, axis=-1, keepdim=False, dtype='int32')
- .squeeze().numpy())
- score_map_list.append(
- F.softmax(
- logit, axis=-1).squeeze().numpy().astype(
- 'float32'))
- outputs['label_map'] = label_map_list
- outputs['score_map'] = score_map_list
- if mode == 'eval':
- if self.status == 'Infer':
- pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
- else:
- pred = paddle.argmax(
- logit, axis=1, keepdim=True, dtype='int32')
- label = inputs[2]
- origin_shape = [label.shape[-2:]]
- pred = self._postprocess(
- pred, origin_shape, transforms=inputs[3])[0] # NCHW
- intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
- pred, label, self.num_classes)
- outputs['intersect_area'] = intersect_area
- outputs['pred_area'] = pred_area
- outputs['label_area'] = label_area
- outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
- self.num_classes)
- if mode == 'train':
- loss_list = metrics.loss_computation(
- logits_list=net_out, labels=inputs[2], losses=self.losses)
- loss = sum(loss_list)
- outputs['loss'] = loss
- return outputs
- def default_loss(self):
- if isinstance(self.use_mixed_loss, bool):
- if self.use_mixed_loss:
- losses = [
- paddleseg.models.CrossEntropyLoss(),
- paddleseg.models.LovaszSoftmaxLoss()
- ]
- coef = [.8, .2]
- loss_type = [
- paddleseg.models.MixedLoss(
- losses=losses, coef=coef),
- ]
- else:
- loss_type = [paddleseg.models.CrossEntropyLoss()]
- else:
- losses, coef = list(zip(*self.use_mixed_loss))
- if not set(losses).issubset(
- ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
- raise ValueError(
- "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
- )
- losses = [getattr(paddleseg.models, loss)() for loss in losses]
- loss_type = [
- paddleseg.models.MixedLoss(
- losses=losses, coef=list(coef))
- ]
- if self.model_name == 'FastSCNN':
- loss_type *= 2
- loss_coef = [1.0, 0.4]
- elif self.model_name == 'BiSeNetV2':
- loss_type *= 5
- loss_coef = [1.0] * 5
- else:
- loss_coef = [1.0]
- losses = {'types': loss_type, 'coef': loss_coef}
- return losses
- def default_optimizer(self,
- parameters,
- learning_rate,
- num_epochs,
- num_steps_each_epoch,
- lr_decay_power=0.9):
- decay_step = num_epochs * num_steps_each_epoch
- lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
- learning_rate, decay_step, end_lr=0, power=lr_decay_power)
- optimizer = paddle.optimizer.Momentum(
- learning_rate=lr_scheduler,
- parameters=parameters,
- momentum=0.9,
- weight_decay=4e-5)
- return optimizer
- def train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- pretrain_weights='CITYSCAPES',
- learning_rate=0.01,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None):
- """
- Train the model.
- Args:
- num_epochs(int): The number of epochs.
- train_dataset(paddlers.dataset): Training dataset.
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
- eval_dataset(paddlers.dataset, optional):
- Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
- optimizer(paddle.optimizer.Optimizer or None, optional):
- Optimizer used in training. If None, a default optimizer is used. Defaults to None.
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
- pretrain_weights(str or None, optional):
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
- learning_rate(float, optional): Learning rate for training. Defaults to .025.
- lr_decay_power(float, optional): Learning decay power. Defaults to .9.
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
- `pretrain_weights` can be set simultaneously. Defaults to None.
- """
- if self.status == 'Infer':
- logging.error(
- "Exported inference model does not support training.",
- exit=True)
- if pretrain_weights is not None and resume_checkpoint is not None:
- logging.error(
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
- exit=True)
- self.labels = train_dataset.labels
- if self.losses is None:
- self.losses = self.default_loss()
- if optimizer is None:
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
- self.optimizer = self.default_optimizer(
- self.net.parameters(), learning_rate, num_epochs,
- num_steps_each_epoch, lr_decay_power)
- else:
- self.optimizer = optimizer
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
- if pretrain_weights not in seg_pretrain_weights_dict[
- self.model_name]:
- logging.warning(
- "Path of pretrain_weights('{}') does not exist!".format(
- pretrain_weights))
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
- "If don't want to use pretrain weights, "
- "set pretrain_weights to be None.".format(
- seg_pretrain_weights_dict[self.model_name][
- 0]))
- pretrain_weights = seg_pretrain_weights_dict[self.model_name][
- 0]
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
- logging.error(
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
- exit=True)
- pretrained_dir = osp.join(save_dir, 'pretrain')
- is_backbone_weights = pretrain_weights == 'IMAGENET'
- self.net_initialize(
- pretrain_weights=pretrain_weights,
- save_dir=pretrained_dir,
- resume_checkpoint=resume_checkpoint,
- is_backbone_weights=is_backbone_weights)
- self.train_loop(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl)
- def quant_aware_train(self,
- num_epochs,
- train_dataset,
- train_batch_size=2,
- eval_dataset=None,
- optimizer=None,
- save_interval_epochs=1,
- log_interval_steps=2,
- save_dir='output',
- learning_rate=0.0001,
- lr_decay_power=0.9,
- early_stop=False,
- early_stop_patience=5,
- use_vdl=True,
- resume_checkpoint=None,
- quant_config=None):
- """
- Quantization-aware training.
- Args:
- num_epochs(int): The number of epochs.
- train_dataset(paddlers.dataset): Training dataset.
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
- eval_dataset(paddlers.dataset, optional):
- Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
- optimizer(paddle.optimizer.Optimizer or None, optional):
- Optimizer used in training. If None, a default optimizer is used. Defaults to None.
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
- learning_rate(float, optional): Learning rate for training. Defaults to .025.
- lr_decay_power(float, optional): Learning decay power. Defaults to .9.
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
- quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
- configuration will be used. Defaults to None.
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
- from. If None, no training checkpoint will be resumed. Defaults to None.
- """
- self._prepare_qat(quant_config)
- self.train(
- num_epochs=num_epochs,
- train_dataset=train_dataset,
- train_batch_size=train_batch_size,
- eval_dataset=eval_dataset,
- optimizer=optimizer,
- save_interval_epochs=save_interval_epochs,
- log_interval_steps=log_interval_steps,
- save_dir=save_dir,
- pretrain_weights=None,
- learning_rate=learning_rate,
- lr_decay_power=lr_decay_power,
- early_stop=early_stop,
- early_stop_patience=early_stop_patience,
- use_vdl=use_vdl,
- resume_checkpoint=resume_checkpoint)
- def evaluate(self, eval_dataset, batch_size=1, return_details=False):
- """
- Evaluate the model.
- Args:
- eval_dataset(paddlers.dataset): Evaluation dataset.
- batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
- return_details(bool, optional): Whether to return evaluation details. Defaults to False.
- Returns:
- collections.OrderedDict with key-value pairs:
- {"miou": `mean intersection over union`,
- "category_iou": `category-wise mean intersection over union`,
- "oacc": `overall accuracy`,
- "category_acc": `category-wise accuracy`,
- "kappa": ` kappa coefficient`,
- "category_F1-score": `F1 score`}.
- """
- arrange_transforms(
- model_type=self.model_type,
- transforms=eval_dataset.transforms,
- mode='eval')
- self.net.eval()
- nranks = paddle.distributed.get_world_size()
- local_rank = paddle.distributed.get_rank()
- if nranks > 1:
- # Initialize parallel environment if not done.
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
- ):
- paddle.distributed.init_parallel_env()
- batch_size_each_card = get_single_card_bs(batch_size)
- if batch_size_each_card > 1:
- batch_size_each_card = 1
- batch_size = batch_size_each_card * paddlers.env_info['num']
- logging.warning(
- "Segmenter only supports batch_size=1 for each gpu/cpu card " \
- "during evaluation, so batch_size " \
- "is forcibly set to {}.".format(batch_size))
- self.eval_data_loader = self.build_data_loader(
- eval_dataset, batch_size=batch_size, mode='eval')
- intersect_area_all = 0
- pred_area_all = 0
- label_area_all = 0
- conf_mat_all = []
- logging.info(
- "Start to evaluate(total_samples={}, total_steps={})...".format(
- eval_dataset.num_samples,
- math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
- with paddle.no_grad():
- for step, data in enumerate(self.eval_data_loader):
- data.append(eval_dataset.transforms.transforms)
- outputs = self.run(self.net, data, 'eval')
- pred_area = outputs['pred_area']
- label_area = outputs['label_area']
- intersect_area = outputs['intersect_area']
- conf_mat = outputs['conf_mat']
- # Gather from all ranks
- if nranks > 1:
- intersect_area_list = []
- pred_area_list = []
- label_area_list = []
- conf_mat_list = []
- paddle.distributed.all_gather(intersect_area_list,
- intersect_area)
- paddle.distributed.all_gather(pred_area_list, pred_area)
- paddle.distributed.all_gather(label_area_list, label_area)
- paddle.distributed.all_gather(conf_mat_list, conf_mat)
- # Some image has been evaluated and should be eliminated in last iter
- if (step + 1) * nranks > len(eval_dataset):
- valid = len(eval_dataset) - step * nranks
- intersect_area_list = intersect_area_list[:valid]
- pred_area_list = pred_area_list[:valid]
- label_area_list = label_area_list[:valid]
- conf_mat_list = conf_mat_list[:valid]
- intersect_area_all += sum(intersect_area_list)
- pred_area_all += sum(pred_area_list)
- label_area_all += sum(label_area_list)
- conf_mat_all.extend(conf_mat_list)
- else:
- intersect_area_all = intersect_area_all + intersect_area
- pred_area_all = pred_area_all + pred_area
- label_area_all = label_area_all + label_area
- conf_mat_all.append(conf_mat)
- class_iou, miou = paddleseg.utils.metrics.mean_iou(
- intersect_area_all, pred_area_all, label_area_all)
- # TODO 确认是按oacc还是macc
- class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
- pred_area_all)
- kappa = paddleseg.utils.metrics.kappa(intersect_area_all,
- pred_area_all, label_area_all)
- category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
- label_area_all)
- eval_metrics = OrderedDict(
- zip([
- 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
- 'category_F1-score'
- ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
- if return_details:
- conf_mat = sum(conf_mat_all)
- eval_details = {'confusion_matrix': conf_mat.tolist()}
- return eval_metrics, eval_details
- return eval_metrics
- def predict(self, img_file, transforms=None):
- """
- Do inference.
- Args:
- Args:
- img_file(List[np.ndarray or str], str or np.ndarray):
- Image path or decoded image data in a BGR format, which also could constitute a list,
- meaning all images to be predicted as a mini-batch.
- transforms(paddlers.transforms.Compose or None, optional):
- Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
- Returns:
- If img_file is a string or np.array, the result is a dict with key-value pairs:
- {"label map": `label map`, "score_map": `score map`}.
- If img_file is a list, the result is a list composed of dicts with the corresponding fields:
- label_map(np.ndarray): the predicted label map (HW)
- score_map(np.ndarray): the prediction score map (HWC)
- """
- if transforms is None and not hasattr(self, 'test_transforms'):
- raise Exception("transforms need to be defined, now is None.")
- if transforms is None:
- transforms = self.test_transforms
- if isinstance(img_file, (str, np.ndarray)):
- images = [img_file]
- else:
- images = img_file
- batch_im, batch_origin_shape = self._preprocess(images, transforms,
- self.model_type)
- self.net.eval()
- data = (batch_im, batch_origin_shape, transforms.transforms)
- outputs = self.run(self.net, data, 'test')
- label_map_list = outputs['label_map']
- score_map_list = outputs['score_map']
- if isinstance(img_file, list):
- prediction = [{
- 'label_map': l,
- 'score_map': s
- } for l, s in zip(label_map_list, score_map_list)]
- else:
- prediction = {
- 'label_map': label_map_list[0],
- 'score_map': score_map_list[0]
- }
- return prediction
- def _preprocess(self, images, transforms, to_tensor=True):
- arrange_transforms(
- model_type=self.model_type, transforms=transforms, mode='test')
- batch_im = list()
- batch_ori_shape = list()
- for im in images:
- sample = {'image': im}
- if isinstance(sample['image'], str):
- sample = Decode(to_rgb=False)(sample)
- ori_shape = sample['image'].shape[:2]
- im = transforms(sample)[0]
- batch_im.append(im)
- batch_ori_shape.append(ori_shape)
- if to_tensor:
- batch_im = paddle.to_tensor(batch_im)
- else:
- batch_im = np.asarray(batch_im)
- return batch_im, batch_ori_shape
- @staticmethod
- def get_transforms_shape_info(batch_ori_shape, transforms):
- batch_restore_list = list()
- for ori_shape in batch_ori_shape:
- restore_list = list()
- h, w = ori_shape[0], ori_shape[1]
- for op in transforms:
- if op.__class__.__name__ == 'Resize':
- restore_list.append(('resize', (h, w)))
- h, w = op.target_size
- elif op.__class__.__name__ == 'ResizeByShort':
- restore_list.append(('resize', (h, w)))
- im_short_size = min(h, w)
- im_long_size = max(h, w)
- scale = float(op.short_size) / float(im_short_size)
- if 0 < op.max_size < np.round(scale * im_long_size):
- scale = float(op.max_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'ResizeByLong':
- restore_list.append(('resize', (h, w)))
- im_long_size = max(h, w)
- scale = float(op.long_size) / float(im_long_size)
- h = int(round(h * scale))
- w = int(round(w * scale))
- elif op.__class__.__name__ == 'Padding':
- if op.target_size:
- target_h, target_w = op.target_size
- else:
- target_h = int(
- (np.ceil(h / op.size_divisor) * op.size_divisor))
- target_w = int(
- (np.ceil(w / op.size_divisor) * op.size_divisor))
- if op.pad_mode == -1:
- offsets = op.offsets
- elif op.pad_mode == 0:
- offsets = [0, 0]
- elif op.pad_mode == 1:
- offsets = [(target_h - h) // 2, (target_w - w) // 2]
- else:
- offsets = [target_h - h, target_w - w]
- restore_list.append(('padding', (h, w), offsets))
- h, w = target_h, target_w
- batch_restore_list.append(restore_list)
- return batch_restore_list
- def _postprocess(self, batch_pred, batch_origin_shape, transforms):
- batch_restore_list = BaseSegmenter.get_transforms_shape_info(
- batch_origin_shape, transforms)
- if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
- return self._infer_postprocess(
- batch_label_map=batch_pred[0],
- batch_score_map=batch_pred[1],
- batch_restore_list=batch_restore_list)
- results = []
- if batch_pred.dtype == paddle.float32:
- mode = 'bilinear'
- else:
- mode = 'nearest'
- for pred, restore_list in zip(batch_pred, batch_restore_list):
- pred = paddle.unsqueeze(pred, axis=0)
- for item in restore_list[::-1]:
- h, w = item[1][0], item[1][1]
- if item[0] == 'resize':
- pred = F.interpolate(
- pred, (h, w), mode=mode, data_format='NCHW')
- elif item[0] == 'padding':
- x, y = item[2]
- pred = pred[:, :, y:y + h, x:x + w]
- else:
- pass
- results.append(pred)
- return results
- def _infer_postprocess(self, batch_label_map, batch_score_map,
- batch_restore_list):
- label_maps = []
- score_maps = []
- for label_map, score_map, restore_list in zip(
- batch_label_map, batch_score_map, batch_restore_list):
- if not isinstance(label_map, np.ndarray):
- label_map = paddle.unsqueeze(label_map, axis=[0, 3])
- score_map = paddle.unsqueeze(score_map, axis=0)
- for item in restore_list[::-1]:
- h, w = item[1][0], item[1][1]
- if item[0] == 'resize':
- if isinstance(label_map, np.ndarray):
- label_map = cv2.resize(
- label_map, (w, h), interpolation=cv2.INTER_NEAREST)
- score_map = cv2.resize(
- score_map, (w, h), interpolation=cv2.INTER_LINEAR)
- else:
- label_map = F.interpolate(
- label_map, (h, w),
- mode='nearest',
- data_format='NHWC')
- score_map = F.interpolate(
- score_map, (h, w),
- mode='bilinear',
- data_format='NHWC')
- elif item[0] == 'padding':
- x, y = item[2]
- if isinstance(label_map, np.ndarray):
- label_map = label_map[..., y:y + h, x:x + w]
- score_map = score_map[..., y:y + h, x:x + w]
- else:
- label_map = label_map[:, :, y:y + h, x:x + w]
- score_map = score_map[:, :, y:y + h, x:x + w]
- else:
- pass
- label_map = label_map.squeeze()
- score_map = score_map.squeeze()
- if not isinstance(label_map, np.ndarray):
- label_map = label_map.numpy()
- score_map = score_map.numpy()
- label_maps.append(label_map.squeeze())
- score_maps.append(score_map.squeeze())
- return label_maps, score_maps
- class CDNet(BaseChangeDetector):
- def __init__(self,
- num_classes=2,
- use_mixed_loss=False,
- in_channels=6,
- **params):
- params.update({'in_channels': in_channels})
- super(CDNet, self).__init__(
- model_name='UNet',
- num_classes=num_classes,
- use_mixed_loss=use_mixed_loss,
- **params)
|