run_task.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. #!/usr/bin/env python
  2. import os
  3. # Import cv2 and sklearn before paddlers to solve the
  4. # "ImportError: dlopen: cannot load any more object with static TLS" issue.
  5. import cv2
  6. import sklearn
  7. import paddle
  8. import paddlers
  9. from paddlers import transforms as T
  10. from config_utils import parse_args, build_objects, CfgNode
  11. def format_cfg(cfg, indent=0):
  12. s = ''
  13. if isinstance(cfg, dict):
  14. for i, (k, v) in enumerate(sorted(cfg.items())):
  15. s += ' ' * indent + str(k) + ': '
  16. if isinstance(v, (dict, list, CfgNode)):
  17. s += '\n' + format_cfg(v, indent=indent + 1)
  18. else:
  19. s += str(v)
  20. if i != len(cfg) - 1:
  21. s += '\n'
  22. elif isinstance(cfg, list):
  23. for i, v in enumerate(cfg):
  24. s += ' ' * indent + '- '
  25. if isinstance(v, (dict, list, CfgNode)):
  26. s += '\n' + format_cfg(v, indent=indent + 1)
  27. else:
  28. s += str(v)
  29. if i != len(cfg) - 1:
  30. s += '\n'
  31. elif isinstance(cfg, CfgNode):
  32. s += ' ' * indent + f"type: {cfg.type}" + '\n'
  33. s += ' ' * indent + f"module: {cfg.module}" + '\n'
  34. s += ' ' * indent + 'args: \n' + format_cfg(cfg.args, indent + 1)
  35. return s
  36. if __name__ == '__main__':
  37. CfgNode.set_context(globals())
  38. cfg = parse_args()
  39. print(format_cfg(cfg))
  40. # Automatically download data
  41. if cfg['download_on']:
  42. paddlers.utils.download_and_decompress(
  43. cfg['download_url'], path=cfg['download_path'])
  44. if cfg['cmd'] == 'train':
  45. train_dataset = build_objects(
  46. cfg['datasets']['train'], mod=paddlers.datasets)
  47. train_transforms = T.Compose(
  48. build_objects(
  49. cfg['transforms']['train'], mod=T))
  50. # XXX: Late binding of transforms
  51. train_dataset.transforms = train_transforms
  52. eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets)
  53. eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T))
  54. # XXX: Late binding of transforms
  55. eval_dataset.transforms = eval_transforms
  56. model = build_objects(
  57. cfg['model'], mod=getattr(paddlers.tasks, cfg['task']))
  58. if cfg['cmd'] == 'train':
  59. if cfg['optimizer']:
  60. if len(cfg['optimizer'].args) == 0:
  61. cfg['optimizer'].args = {}
  62. if not isinstance(cfg['optimizer'].args, dict):
  63. raise TypeError
  64. if cfg['optimizer'].args.get('parameters', None) is not None:
  65. raise ValueError
  66. cfg['optimizer'].args['parameters'] = model.net.parameters()
  67. optimizer = build_objects(cfg['optimizer'], mod=paddle.optimizer)
  68. else:
  69. optimizer = None
  70. model.train(
  71. num_epochs=cfg['num_epochs'],
  72. train_dataset=train_dataset,
  73. train_batch_size=cfg['train_batch_size'],
  74. eval_dataset=eval_dataset,
  75. optimizer=optimizer,
  76. save_interval_epochs=cfg['save_interval_epochs'],
  77. log_interval_steps=cfg['log_interval_steps'],
  78. save_dir=cfg['save_dir'],
  79. learning_rate=cfg['learning_rate'],
  80. early_stop=cfg['early_stop'],
  81. early_stop_patience=cfg['early_stop_patience'],
  82. use_vdl=cfg['use_vdl'],
  83. resume_checkpoint=cfg['resume_checkpoint'] or None,
  84. **cfg['train'])
  85. elif cfg['cmd'] == 'eval':
  86. state_dict = paddle.load(
  87. os.path.join(cfg['resume_checkpoint'], 'model.pdparams'))
  88. model.net.set_state_dict(state_dict)
  89. res = model.evaluate(eval_dataset)
  90. print(res)