test_cd_models.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from itertools import cycle
  15. import paddlers
  16. from rs_models.test_model import TestModel
  17. class _CDModelAdapter(object):
  18. def __init__(self, cd_model):
  19. super().__init__()
  20. self.cd_model = cd_model
  21. def __call__(self, input):
  22. return self.cd_model(input[0], input[1])
  23. class TestCDModel(TestModel):
  24. EF_MODE = 'None' # Early-fusion strategy
  25. def check_output(self, output, target):
  26. self.assertIsInstance(output, list)
  27. self.check_output_equal(len(output), len(target))
  28. for o, t in zip(output, target):
  29. o = o.numpy()
  30. self.check_output_equal(o.shape[0], t.shape[0])
  31. self.check_output_equal(len(o.shape), 4)
  32. self.check_output_equal(o.shape[2:], t.shape[2:])
  33. def set_inputs(self):
  34. if self.EF_MODE == 'Concat':
  35. # Early-fusion
  36. def _gen_data(specs):
  37. for spec in specs:
  38. c = spec['in_channels'] // 2
  39. assert c * 2 == spec['in_channels']
  40. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  41. elif self.EF_MODE == 'None':
  42. # Late-fusion
  43. def _gen_data(specs):
  44. for spec in specs:
  45. c = spec.get('in_channels', 3)
  46. yield [self.get_randn_tensor(c), self.get_randn_tensor(c)]
  47. else:
  48. raise ValueError
  49. self.inputs = _gen_data(self.specs)
  50. def set_targets(self):
  51. def _gen_data(specs):
  52. for spec in specs:
  53. c = spec.get('num_classes', 2)
  54. yield [self.get_zeros_array(c)]
  55. self.targets = _gen_data(self.specs)
  56. def build_model(self, spec):
  57. model = super().build_model(spec)
  58. return _CDModelAdapter(model)
  59. class TestBITModel(TestCDModel):
  60. MODEL_CLASS = paddlers.custom_models.cd.BIT
  61. def set_specs(self):
  62. base_spec = dict(in_channels=3, num_classes=2)
  63. self.specs = [
  64. base_spec, dict(
  65. **base_spec, backbone='resnet34'), dict(
  66. **base_spec, n_stages=3), dict(
  67. **base_spec, enc_depth=4, dec_head_dim=16), dict(
  68. in_channels=4, num_classes=2), dict(
  69. in_channels=3, num_classes=8)
  70. ]
  71. class TestCDNetModel(TestCDModel):
  72. MODEL_CLASS = paddlers.custom_models.cd.CDNet
  73. EF_MODE = 'Concat'
  74. def set_specs(self):
  75. self.specs = [
  76. dict(
  77. in_channels=6, num_classes=2), dict(
  78. in_channels=8, num_classes=2), dict(
  79. in_channels=6, num_classes=8)
  80. ]
  81. class TestChangeStarModel(TestCDModel):
  82. MODEL_CLASS = paddlers.custom_models.cd.ChangeStar
  83. def set_specs(self):
  84. self.specs = [
  85. dict(num_classes=2), dict(num_classes=10), dict(
  86. num_classes=2, mid_channels=128, num_convs=2), dict(
  87. num_classes=2, _phase='eval', _stop_grad=True)
  88. ]
  89. def set_targets(self):
  90. # Avoid allocation of large memories
  91. tar_c2 = [self.get_zeros_array(2)] * 4
  92. self.targets = [
  93. tar_c2,
  94. [self.get_zeros_array(10)] * 2 + [self.get_zeros_array(2)] * 2,
  95. tar_c2, [self.get_zeros_array(2)]
  96. ]
  97. class TestDSAMNetModel(TestCDModel):
  98. MODEL_CLASS = paddlers.custom_models.cd.DSAMNet
  99. def set_specs(self):
  100. base_spec = dict(in_channels=3, num_classes=2)
  101. self.specs = [
  102. base_spec, dict(
  103. in_channels=8, num_classes=2), dict(
  104. in_channels=3, num_classes=8), dict(
  105. **base_spec, ca_ratio=4, sa_kernel=5), dict(
  106. **base_spec, _phase='eval', _stop_grad=True)
  107. ]
  108. def set_targets(self):
  109. # Avoid allocation of large memories
  110. tar_c2 = [self.get_zeros_array(2)] * 3
  111. self.targets = [
  112. tar_c2, tar_c2, [self.get_zeros_array(8)] * 3, tar_c2,
  113. [self.get_zeros_array(2)]
  114. ]
  115. class TestDSIFNModel(TestCDModel):
  116. MODEL_CLASS = paddlers.custom_models.cd.DSIFN
  117. def set_specs(self):
  118. self.specs = [
  119. dict(num_classes=2), dict(num_classes=10), dict(
  120. num_classes=2, use_dropout=True), dict(
  121. num_classes=2, _phase='eval', _stop_grad=True)
  122. ]
  123. def set_targets(self):
  124. # Avoid allocation of large memories
  125. tar_c2 = [self.get_zeros_array(2)] * 5
  126. self.targets = [
  127. tar_c2, [self.get_zeros_array(10)] * 5, tar_c2,
  128. [self.get_zeros_array(2)]
  129. ]
  130. class TestFCEarlyFusionModel(TestCDModel):
  131. MODEL_CLASS = paddlers.custom_models.cd.FCEarlyFusion
  132. EF_MODE = 'Concat'
  133. def set_specs(self):
  134. self.specs = [
  135. dict(
  136. in_channels=6, num_classes=2), dict(
  137. in_channels=8, num_classes=2), dict(
  138. in_channels=6, num_classes=8), dict(
  139. in_channels=6, num_classes=2, use_dropout=True)
  140. ]
  141. class TestFCSiamConcModel(TestCDModel):
  142. MODEL_CLASS = paddlers.custom_models.cd.FCSiamConc
  143. def set_specs(self):
  144. self.specs = [
  145. dict(
  146. in_channels=3, num_classes=2), dict(
  147. in_channels=8, num_classes=2), dict(
  148. in_channels=3, num_classes=8), dict(
  149. in_channels=3, num_classes=2, use_dropout=True)
  150. ]
  151. class TestFCSiamDiffModel(TestCDModel):
  152. MODEL_CLASS = paddlers.custom_models.cd.FCSiamDiff
  153. def set_specs(self):
  154. self.specs = [
  155. dict(
  156. in_channels=3, num_classes=2), dict(
  157. in_channels=8, num_classes=2), dict(
  158. in_channels=3, num_classes=8), dict(
  159. in_channels=3, num_classes=2, use_dropout=True)
  160. ]
  161. class TestSNUNetModel(TestCDModel):
  162. MODEL_CLASS = paddlers.custom_models.cd.SNUNet
  163. def set_specs(self):
  164. self.specs = [
  165. dict(
  166. in_channels=3, num_classes=2), dict(
  167. in_channels=8, num_classes=2), dict(
  168. in_channels=3, num_classes=8), dict(
  169. in_channels=3, num_classes=2, width=64)
  170. ]
  171. class TestSTANetModel(TestCDModel):
  172. MODEL_CLASS = paddlers.custom_models.cd.STANet
  173. def set_specs(self):
  174. base_spec = dict(in_channels=3, num_classes=2)
  175. self.specs = [
  176. base_spec, dict(
  177. in_channels=8, num_classes=2), dict(
  178. in_channels=3, num_classes=8), dict(
  179. **base_spec, att_type='PAM'), dict(
  180. **base_spec, ds_factor=4)
  181. ]