import os import paddlers as pdrs from paddlers import transforms as T # download dataset data_dir = 'sar_ship_1' if not os.path.exists(data_dir): dataset_url = 'https://paddleseg.bj.bcebos.com/dataset/sar_ship_1.tar.gz' pdrs.utils.download_and_decompress(dataset_url, path='./') # define transforms train_transforms = T.Compose([ T.RandomDistort(), T.RandomExpand(), T.RandomCrop(), T.RandomHorizontalFlip(), T.BatchRandomResize( target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], interp='RANDOM'), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) eval_transforms = T.Compose([ T.Resize(target_size=608, interp='CUBIC'), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # define dataset train_file_list = os.path.join(data_dir, 'train.txt') val_file_list = os.path.join(data_dir, 'valid.txt') label_file_list = os.path.join(data_dir, 'labels.txt') train_dataset = pdrs.datasets.VOCDetection( data_dir=data_dir, file_list=train_file_list, label_list=label_file_list, transforms=train_transforms, shuffle=True) eval_dataset = pdrs.datasets.VOCDetection( data_dir=data_dir, file_list=train_file_list, label_list=label_file_list, transforms=eval_transforms, shuffle=False) # define models num_classes = len(train_dataset.labels) model = pdrs.tasks.FasterRCNN(num_classes=num_classes) # train model.train( num_epochs=60, train_dataset=train_dataset, train_batch_size=2, eval_dataset=eval_dataset, pretrain_weights='COCO', learning_rate=0.005 / 12, warmup_steps=10, warmup_start_lr=0.0, save_interval_epochs=5, lr_decay_epochs=[20, 40], save_dir='output/faster_rcnn_sar_ship', use_vdl=True)