# Basic configurations of SVCD dataset datasets: train: !Node type: CDDataset args: data_dir: ./data/svcd/ file_list: ./data/svcd/train.txt label_list: null num_workers: 2 shuffle: True with_seg_labels: False binarize_labels: True eval: !Node type: CDDataset args: data_dir: ./data/svcd/ file_list: ./data/svcd/val.txt label_list: null num_workers: 0 shuffle: False with_seg_labels: False binarize_labels: True transforms: train: - !Node type: DecodeImg - !Node type: RandomFlipOrRotate args: probs: [0.35, 0.35] probsf: [0.5, 0.5, 0, 0, 0] probsr: [0.33, 0.34, 0.33] - !Node type: Normalize args: mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] - !Node type: ArrangeChangeDetector args: ['train'] eval: - !Node type: DecodeImg - !Node type: Normalize args: mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] - !Node type: ArrangeChangeDetector args: ['eval'] download_on: False num_epochs: 200 train_batch_size: 8 optimizer: !Node type: Adam args: learning_rate: !Node type: StepDecay module: paddle.optimizer.lr args: learning_rate: 0.0004 step_size: 87500 gamma: 0.1 save_interval_epochs: 20 log_interval_steps: 50 save_dir: ./exp/ learning_rate: 0.0004 early_stop: False early_stop_patience: 5 use_vdl: True resume_checkpoint: ''