|
@@ -0,0 +1,274 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import os.path as osp
|
|
|
+import tempfile
|
|
|
+
|
|
|
+import paddlers as pdrs
|
|
|
+import paddlers.transforms as T
|
|
|
+from testing_utils import CommonTest
|
|
|
+
|
|
|
+
|
|
|
+class TestSegSliderPredict(CommonTest):
|
|
|
+ def setUp(self):
|
|
|
+ self.model = pdrs.tasks.seg.UNet(in_channels=10)
|
|
|
+ self.transforms = T.Compose([
|
|
|
+ T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
|
|
|
+ T.ArrangeSegmenter('test')
|
|
|
+ ])
|
|
|
+ self.image_path = "data/ssst/multispectral.tif"
|
|
|
+ self.basename = osp.basename(self.image_path)
|
|
|
+
|
|
|
+ def test_blocksize_and_overlap_whole(self):
|
|
|
+ # Original image size (256, 256)
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_path, self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # Whole-image inference using slider_predict()
|
|
|
+ save_dir = osp.join(td, 'pred1')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 256, 0,
|
|
|
+ self.transforms)
|
|
|
+ pred1 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` == `overlap`
|
|
|
+ save_dir = osp.join(td, 'pred2')
|
|
|
+ with self.assertRaises(ValueError):
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 128, 128,
|
|
|
+ self.transforms)
|
|
|
+
|
|
|
+ # `block_size` is a tuple
|
|
|
+ save_dir = osp.join(td, 'pred3')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, (128, 32), 0,
|
|
|
+ self.transforms)
|
|
|
+ pred3 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` and `overlap` are both tuples
|
|
|
+ save_dir = osp.join(td, 'pred4')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, (128, 100),
|
|
|
+ (10, 5), self.transforms)
|
|
|
+ pred4 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` larger than image size
|
|
|
+ save_dir = osp.join(td, 'pred5')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 512, 0,
|
|
|
+ self.transforms)
|
|
|
+ pred5 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred5.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ def test_merge_strategy(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_path, self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # 'keep_first'
|
|
|
+ save_dir = osp.join(td, 'keep_first')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first')
|
|
|
+ pred_keepfirst = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'keep_last'
|
|
|
+ save_dir = osp.join(td, 'keep_last')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_last')
|
|
|
+ pred_keeplast = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'vote'
|
|
|
+ save_dir = osp.join(td, 'vote')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='vote')
|
|
|
+ pred_vote = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_vote.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ def test_geo_info(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ _, geo_info_in = T.decode_image(self.image_path, read_geo_info=True)
|
|
|
+ self.model.slider_predict(self.image_path, td, 128, 0,
|
|
|
+ self.transforms)
|
|
|
+ _, geo_info_out = T.decode_image(
|
|
|
+ osp.join(td, self.basename), read_geo_info=True)
|
|
|
+ self.assertEqual(geo_info_out['geo_trans'],
|
|
|
+ geo_info_in['geo_trans'])
|
|
|
+ self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])
|
|
|
+
|
|
|
+
|
|
|
+class TestCDSliderPredict(CommonTest):
|
|
|
+ def setUp(self):
|
|
|
+ self.model = pdrs.tasks.cd.BIT(in_channels=10)
|
|
|
+ self.transforms = T.Compose([
|
|
|
+ T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
|
|
|
+ T.ArrangeChangeDetector('test')
|
|
|
+ ])
|
|
|
+ self.image_paths = ("data/ssmt/multispectral_t1.tif",
|
|
|
+ "data/ssmt/multispectral_t2.tif")
|
|
|
+ self.basename = osp.basename(self.image_paths[0])
|
|
|
+
|
|
|
+ def test_blocksize_and_overlap_whole(self):
|
|
|
+ # Original image size (256, 256)
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_paths, self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # Whole-image inference using slider_predict()
|
|
|
+ save_dir = osp.join(td, 'pred1')
|
|
|
+ self.model.slider_predict(self.image_paths, save_dir, 256, 0,
|
|
|
+ self.transforms)
|
|
|
+ pred1 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` == `overlap`
|
|
|
+ save_dir = osp.join(td, 'pred2')
|
|
|
+ with self.assertRaises(ValueError):
|
|
|
+ self.model.slider_predict(self.image_paths, save_dir, 128, 128,
|
|
|
+ self.transforms)
|
|
|
+
|
|
|
+ # `block_size` is a tuple
|
|
|
+ save_dir = osp.join(td, 'pred3')
|
|
|
+ self.model.slider_predict(self.image_paths, save_dir, (128, 32), 0,
|
|
|
+ self.transforms)
|
|
|
+ pred3 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` and `overlap` are both tuples
|
|
|
+ save_dir = osp.join(td, 'pred4')
|
|
|
+ self.model.slider_predict(self.image_paths, save_dir, (128, 100),
|
|
|
+ (10, 5), self.transforms)
|
|
|
+ pred4 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` larger than image size
|
|
|
+ save_dir = osp.join(td, 'pred5')
|
|
|
+ self.model.slider_predict(self.image_paths, save_dir, 512, 0,
|
|
|
+ self.transforms)
|
|
|
+ pred5 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred5.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ def test_merge_strategy(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_paths, self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # 'keep_first'
|
|
|
+ save_dir = osp.join(td, 'keep_first')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_paths,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first')
|
|
|
+ pred_keepfirst = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'keep_last'
|
|
|
+ save_dir = osp.join(td, 'keep_last')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_paths,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_last')
|
|
|
+ pred_keeplast = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'vote'
|
|
|
+ save_dir = osp.join(td, 'vote')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_paths,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='vote')
|
|
|
+ pred_vote = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ to_uint8=False,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_vote.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ def test_geo_info(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ _, geo_info_in = T.decode_image(
|
|
|
+ self.image_paths[0], read_geo_info=True)
|
|
|
+ self.model.slider_predict(self.image_paths, td, 128, 0,
|
|
|
+ self.transforms)
|
|
|
+ _, geo_info_out = T.decode_image(
|
|
|
+ osp.join(td, self.basename), read_geo_info=True)
|
|
|
+ self.assertEqual(geo_info_out['geo_trans'],
|
|
|
+ geo_info_in['geo_trans'])
|
|
|
+ self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])
|