|
@@ -1,88 +0,0 @@
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-import os
|
|
|
-import numpy as np
|
|
|
-from PIL import Image
|
|
|
-
|
|
|
-import paddle
|
|
|
-from ppgan.models.generators import PAN
|
|
|
-from ppgan.utils.download import get_path_from_url
|
|
|
-from ppgan.utils.logger import get_logger
|
|
|
-
|
|
|
-from .base_predictor import BasePredictor
|
|
|
-
|
|
|
-REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/pan_x4.pdparams'
|
|
|
-
|
|
|
-
|
|
|
-class PANPredictor(BasePredictor):
|
|
|
- def __init__(self, output='output', weight_path=None):
|
|
|
- self.input = input
|
|
|
- self.output = os.path.join(output,
|
|
|
- 'PAN')
|
|
|
- self.model = PAN(3, 3, 40, 24, 16)
|
|
|
- if weight_path is None:
|
|
|
- weight_path = get_path_from_url(REALSR_WEIGHT_URL)
|
|
|
- state_dict = paddle.load(weight_path)
|
|
|
- state_dict = state_dict['generator']
|
|
|
- self.model.load_dict(state_dict)
|
|
|
- self.model.eval()
|
|
|
-
|
|
|
-
|
|
|
- def norm(self, img):
|
|
|
- img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0
|
|
|
- return img.astype('float32')
|
|
|
-
|
|
|
-
|
|
|
- def denorm(self, img):
|
|
|
- img = img.transpose((1, 2, 0))
|
|
|
- return (img * 255).clip(0, 255).astype('uint8')
|
|
|
-
|
|
|
-
|
|
|
- def run_image(self, img):
|
|
|
- if isinstance(img, str):
|
|
|
- ori_img = Image.open(img).convert('RGB')
|
|
|
- elif isinstance(img, np.ndarray):
|
|
|
- ori_img = Image.fromarray(img).convert('RGB')
|
|
|
- elif isinstance(img, Image.Image):
|
|
|
- ori_img = img
|
|
|
-
|
|
|
- img = self.norm(ori_img)
|
|
|
- x = paddle.to_tensor(img[np.newaxis, ...])
|
|
|
- with paddle.no_grad():
|
|
|
- out = self.model(x)
|
|
|
-
|
|
|
- pred_img = self.denorm(out.numpy()[0])
|
|
|
- pred_img = Image.fromarray(pred_img)
|
|
|
- return pred_img
|
|
|
-
|
|
|
-
|
|
|
- def run(self, input):
|
|
|
-
|
|
|
- if not os.path.exists(self.output):
|
|
|
- os.makedirs(self.output)
|
|
|
-
|
|
|
- pred_img = self.run_image(input)
|
|
|
- out_path = None
|
|
|
- if self.output:
|
|
|
- try:
|
|
|
- base_name = os.path.splitext(os.path.basename(input))[0]
|
|
|
- except:
|
|
|
- base_name = 'result'
|
|
|
- out_path = os.path.join(self.output, base_name + '.png')
|
|
|
- pred_img.save(out_path)
|
|
|
- logger = get_logger()
|
|
|
- logger.info('Image saved to {}'.format(out_path))
|
|
|
-
|
|
|
- return pred_img, out_path
|