|
@@ -120,7 +120,12 @@ class TestCDPredictor(TestPredictor):
|
|
|
t2_path = "data/ssmt/optical_t2.bmp"
|
|
t2_path = "data/ssmt/optical_t2.bmp"
|
|
|
single_input = (t1_path, t2_path)
|
|
single_input = (t1_path, t2_path)
|
|
|
num_inputs = 2
|
|
num_inputs = 2
|
|
|
- transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
|
|
|
|
+ transforms = pdrs.transforms.Compose(
|
|
|
|
|
+ [
|
|
|
|
|
+ pdrs.transforms.DecodeImg(),
|
|
|
|
|
+ pdrs.transforms.Normalize(),
|
|
|
|
|
+ ],
|
|
|
|
|
+ arrange=pdrs.transforms.ArrangeChangeDetector('test'))
|
|
|
|
|
|
|
|
# Expected failure
|
|
# Expected failure
|
|
|
with self.assertRaises(ValueError):
|
|
with self.assertRaises(ValueError):
|
|
@@ -184,7 +189,9 @@ class TestClasPredictor(TestPredictor):
|
|
|
def check_predictor(self, predictor, trainer):
|
|
def check_predictor(self, predictor, trainer):
|
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
|
num_inputs = 2
|
|
num_inputs = 2
|
|
|
- transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
|
|
|
|
+ transforms = pdrs.transforms.Compose(
|
|
|
|
|
+ [pdrs.transforms.DecodeImg(), pdrs.transforms.Normalize()],
|
|
|
|
|
+ arrange=pdrs.transforms.ArrangeClassifier('test'))
|
|
|
labels = list(range(2))
|
|
labels = list(range(2))
|
|
|
trainer.labels = labels
|
|
trainer.labels = labels
|
|
|
predictor._model.labels = labels
|
|
predictor._model.labels = labels
|
|
@@ -249,7 +256,9 @@ class TestDetPredictor(TestPredictor):
|
|
|
# given that the network is (partially?) randomly initialized.
|
|
# given that the network is (partially?) randomly initialized.
|
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
|
num_inputs = 2
|
|
num_inputs = 2
|
|
|
- transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
|
|
|
|
+ transforms = pdrs.transforms.Compose(
|
|
|
|
|
+ [pdrs.transforms.DecodeImg(), pdrs.transforms.Normalize()],
|
|
|
|
|
+ arrange=pdrs.transforms.ArrangeDetector('test'))
|
|
|
labels = list(range(80))
|
|
labels = list(range(80))
|
|
|
trainer.labels = labels
|
|
trainer.labels = labels
|
|
|
predictor._model.labels = labels
|
|
predictor._model.labels = labels
|
|
@@ -303,7 +312,12 @@ class TestSegPredictor(TestPredictor):
|
|
|
def check_predictor(self, predictor, trainer):
|
|
def check_predictor(self, predictor, trainer):
|
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
single_input = "data/ssmt/optical_t1.bmp"
|
|
|
num_inputs = 2
|
|
num_inputs = 2
|
|
|
- transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
|
|
|
|
+ transforms = pdrs.transforms.Compose(
|
|
|
|
|
+ [
|
|
|
|
|
+ pdrs.transforms.DecodeImg(),
|
|
|
|
|
+ pdrs.transforms.Normalize(),
|
|
|
|
|
+ ],
|
|
|
|
|
+ arrange=pdrs.transforms.ArrangeSegmenter('test'))
|
|
|
|
|
|
|
|
# Single input (file path)
|
|
# Single input (file path)
|
|
|
input_ = single_input
|
|
input_ = single_input
|