|
@@ -0,0 +1,202 @@
|
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
+#
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
+#
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
+#
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
+# limitations under the License.
|
|
|
|
+
|
|
|
|
+import paddle
|
|
|
|
+import paddle.nn as nn
|
|
|
|
+import paddle.nn.functional as F
|
|
|
|
+from paddle.vision.models import vgg16
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+from .layers import Conv1x1, make_norm, ChannelAttention, SpatialAttention
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class DSIFN(nn.Layer):
|
|
|
|
+ """
|
|
|
|
+ The DSIFN implementation based on PaddlePaddle.
|
|
|
|
+
|
|
|
|
+ The original article refers to
|
|
|
|
+ C. Zhang, et al., "A deeply supervised image fusion network for change detection in high resolution bi-temporal remote
|
|
|
|
+ sensing images"
|
|
|
|
+ (https://www.sciencedirect.com/science/article/pii/S0924271620301532)
|
|
|
|
+
|
|
|
|
+ Note that in this implementation, there is a flexible number of target classes.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ num_classes (int): The number of target classes.
|
|
|
|
+ use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. When the model is trained
|
|
|
|
+ on a relatively small dataset, the dropout layers help prevent overfitting. Default: False.
|
|
|
|
+ """
|
|
|
|
+ def __init__(self, num_classes, use_dropout=False):
|
|
|
|
+ super().__init__()
|
|
|
|
+
|
|
|
|
+ self.encoder1 = self.encoder2 = VGG16FeaturePicker()
|
|
|
|
+
|
|
|
|
+ self.sa1 = SpatialAttention()
|
|
|
|
+ self.sa2= SpatialAttention()
|
|
|
|
+ self.sa3 = SpatialAttention()
|
|
|
|
+ self.sa4 = SpatialAttention()
|
|
|
|
+ self.sa5 = SpatialAttention()
|
|
|
|
+
|
|
|
|
+ self.ca1 = ChannelAttention(in_ch=1024)
|
|
|
|
+ self.bn_ca1 = make_norm(1024)
|
|
|
|
+ self.o1_conv1 = conv2d_bn(1024, 512, use_dropout)
|
|
|
|
+ self.o1_conv2 = conv2d_bn(512, 512, use_dropout)
|
|
|
|
+ self.bn_sa1 = make_norm(512)
|
|
|
|
+ self.o1_conv3 = Conv1x1(512, num_classes)
|
|
|
|
+ self.trans_conv1 = nn.Conv2DTranspose(512, 512, kernel_size=2, stride=2)
|
|
|
|
+
|
|
|
|
+ self.ca2 = ChannelAttention(in_ch=1536)
|
|
|
|
+ self.bn_ca2 = make_norm(1536)
|
|
|
|
+ self.o2_conv1 = conv2d_bn(1536, 512, use_dropout)
|
|
|
|
+ self.o2_conv2 = conv2d_bn(512, 256, use_dropout)
|
|
|
|
+ self.o2_conv3 = conv2d_bn(256, 256, use_dropout)
|
|
|
|
+ self.bn_sa2 = make_norm(256)
|
|
|
|
+ self.o2_conv4 = Conv1x1(256, num_classes)
|
|
|
|
+ self.trans_conv2 = nn.Conv2DTranspose(256, 256, kernel_size=2, stride=2)
|
|
|
|
+
|
|
|
|
+ self.ca3 = ChannelAttention(in_ch=768)
|
|
|
|
+ self.o3_conv1 = conv2d_bn(768, 256, use_dropout)
|
|
|
|
+ self.o3_conv2 = conv2d_bn(256, 128, use_dropout)
|
|
|
|
+ self.o3_conv3 = conv2d_bn(128, 128, use_dropout)
|
|
|
|
+ self.bn_sa3 = make_norm(128)
|
|
|
|
+ self.o3_conv4 = Conv1x1(128, num_classes)
|
|
|
|
+ self.trans_conv3 = nn.Conv2DTranspose(128, 128, kernel_size=2, stride=2)
|
|
|
|
+
|
|
|
|
+ self.ca4 = ChannelAttention(in_ch=384)
|
|
|
|
+ self.o4_conv1 = conv2d_bn(384, 128, use_dropout)
|
|
|
|
+ self.o4_conv2 = conv2d_bn(128, 64, use_dropout)
|
|
|
|
+ self.o4_conv3 = conv2d_bn(64, 64, use_dropout)
|
|
|
|
+ self.bn_sa4 = make_norm(64)
|
|
|
|
+ self.o4_conv4 = Conv1x1(64, num_classes)
|
|
|
|
+ self.trans_conv4 = nn.Conv2DTranspose(64, 64, kernel_size=2, stride=2)
|
|
|
|
+
|
|
|
|
+ self.ca5 = ChannelAttention(in_ch=192)
|
|
|
|
+ self.o5_conv1 = conv2d_bn(192, 64, use_dropout)
|
|
|
|
+ self.o5_conv2 = conv2d_bn(64, 32, use_dropout)
|
|
|
|
+ self.o5_conv3 = conv2d_bn(32, 16, use_dropout)
|
|
|
|
+ self.bn_sa5 = make_norm(16)
|
|
|
|
+ self.o5_conv4 = Conv1x1(16, num_classes)
|
|
|
|
+
|
|
|
|
+ def forward(self, t1, t2):
|
|
|
|
+ # Extract bi-temporal features.
|
|
|
|
+ with paddle.no_grad():
|
|
|
|
+ self.encoder1.eval(), self.encoder2.eval()
|
|
|
|
+ t1_feats = self.encoder1(t1)
|
|
|
|
+ t2_feats = self.encoder2(t2)
|
|
|
|
+
|
|
|
|
+ t1_f_l3, t1_f_l8, t1_f_l15, t1_f_l22, t1_f_l29 = t1_feats
|
|
|
|
+ t2_f_l3, t2_f_l8, t2_f_l15, t2_f_l22, t2_f_l29,= t2_feats
|
|
|
|
+
|
|
|
|
+ # Multi-level decoding
|
|
|
|
+ x = paddle.concat([t1_f_l29, t2_f_l29], axis=1)
|
|
|
|
+ x = self.o1_conv1(x)
|
|
|
|
+ x = self.o1_conv2(x)
|
|
|
|
+ x = self.sa1(x) * x
|
|
|
|
+ x = self.bn_sa1(x)
|
|
|
|
+
|
|
|
|
+ out1 = F.interpolate(
|
|
|
|
+ self.o1_conv3(x),
|
|
|
|
+ size=paddle.shape(t1)[2:],
|
|
|
|
+ mode='bilinear',
|
|
|
|
+ align_corners=True
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ x = self.trans_conv1(x)
|
|
|
|
+ x = paddle.concat([x, t1_f_l22, t2_f_l22], axis=1)
|
|
|
|
+ x = self.ca2(x)*x
|
|
|
|
+ x = self.o2_conv1(x)
|
|
|
|
+ x = self.o2_conv2(x)
|
|
|
|
+ x = self.o2_conv3(x)
|
|
|
|
+ x = self.sa2(x) *x
|
|
|
|
+ x = self.bn_sa2(x)
|
|
|
|
+
|
|
|
|
+ out2 = F.interpolate(
|
|
|
|
+ self.o2_conv4(x),
|
|
|
|
+ size=paddle.shape(t1)[2:],
|
|
|
|
+ mode='bilinear',
|
|
|
|
+ align_corners=True
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ x = self.trans_conv2(x)
|
|
|
|
+ x = paddle.concat([x, t1_f_l15, t2_f_l15], axis=1)
|
|
|
|
+ x = self.ca3(x)*x
|
|
|
|
+ x = self.o3_conv1(x)
|
|
|
|
+ x = self.o3_conv2(x)
|
|
|
|
+ x = self.o3_conv3(x)
|
|
|
|
+ x = self.sa3(x) *x
|
|
|
|
+ x = self.bn_sa3(x)
|
|
|
|
+
|
|
|
|
+ out3 = F.interpolate(
|
|
|
|
+ self.o3_conv4(x),
|
|
|
|
+ size=paddle.shape(t1)[2:],
|
|
|
|
+ mode='bilinear',
|
|
|
|
+ align_corners=True
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ x = self.trans_conv3(x)
|
|
|
|
+ x = paddle.concat([x, t1_f_l8, t2_f_l8], axis=1)
|
|
|
|
+ x = self.ca4(x)*x
|
|
|
|
+ x = self.o4_conv1(x)
|
|
|
|
+ x = self.o4_conv2(x)
|
|
|
|
+ x = self.o4_conv3(x)
|
|
|
|
+ x = self.sa4(x) *x
|
|
|
|
+ x = self.bn_sa4(x)
|
|
|
|
+
|
|
|
|
+ out4 = F.interpolate(
|
|
|
|
+ self.o4_conv4(x),
|
|
|
|
+ size=paddle.shape(t1)[2:],
|
|
|
|
+ mode='bilinear',
|
|
|
|
+ align_corners=True
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ x = self.trans_conv4(x)
|
|
|
|
+ x = paddle.concat([x, t1_f_l3, t2_f_l3], axis=1)
|
|
|
|
+ x = self.ca5(x)*x
|
|
|
|
+ x = self.o5_conv1(x)
|
|
|
|
+ x = self.o5_conv2(x)
|
|
|
|
+ x = self.o5_conv3(x)
|
|
|
|
+ x = self.sa5(x) *x
|
|
|
|
+ x = self.bn_sa5(x)
|
|
|
|
+
|
|
|
|
+ out5 = self.o5_conv4(x)
|
|
|
|
+
|
|
|
|
+ return out5, out4, out3, out2, out1
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class VGG16FeaturePicker(nn.Layer):
|
|
|
|
+ def __init__(self, indices=(3,8,15,22,29)):
|
|
|
|
+ super().__init__()
|
|
|
|
+ features = list(vgg16(pretrained=True).features)[:30]
|
|
|
|
+ self.features = nn.LayerList(features)
|
|
|
|
+ self.features.eval()
|
|
|
|
+ self.indices = set(indices)
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ picked_feats = []
|
|
|
|
+ for idx, model in enumerate(self.features):
|
|
|
|
+ x = model(x)
|
|
|
|
+ if idx in self.indices:
|
|
|
|
+ picked_feats.append(x)
|
|
|
|
+ return picked_feats
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def conv2d_bn(in_ch, out_ch, with_dropout=True):
|
|
|
|
+ lst = [
|
|
|
|
+ nn.Conv2D(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
|
|
|
|
+ nn.PReLU(),
|
|
|
|
+ make_norm(out_ch),
|
|
|
|
+ ]
|
|
|
|
+ if with_dropout:
|
|
|
|
+ lst.append(nn.Dropout(p=0.6))
|
|
|
|
+ return nn.Sequential(*lst)
|