|
@@ -12,12 +12,23 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
|
|
|
+import os
|
|
|
+import os.path as osp
|
|
|
+from abc import ABCMeta, abstractmethod
|
|
|
from collections import Counter, defaultdict
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
+import paddlers.utils.logging as logging
|
|
|
|
|
|
-class SlowCache(object):
|
|
|
+
|
|
|
+class Cache(metaclass=ABCMeta):
|
|
|
+ @abstractmethod
|
|
|
+ def get_block(self, i_st, j_st, h, w):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class SlowCache(Cache):
|
|
|
def __init__(self):
|
|
|
self.cache = defaultdict(Counter)
|
|
|
|
|
@@ -50,3 +61,244 @@ class SlowCache(object):
|
|
|
row.append(self.get_pixel(i, j))
|
|
|
block.append(row)
|
|
|
return np.asarray(block)
|
|
|
+
|
|
|
+
|
|
|
+class ProbCache(Cache):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'):
|
|
|
+ self.cache = None
|
|
|
+ self.h = h
|
|
|
+ self.w = w
|
|
|
+ self.ch = ch
|
|
|
+ self.cw = cw
|
|
|
+ self.sh = sh
|
|
|
+ self.sw = sw
|
|
|
+ if not issubclass(dtype, np.floating):
|
|
|
+ raise TypeError("`dtype` must be one of the floating types.")
|
|
|
+ self.dtype = dtype
|
|
|
+ order = order.lower()
|
|
|
+ if order not in ('c', 'f'):
|
|
|
+ raise ValueError("`order` other than 'c' and 'f' is not supported.")
|
|
|
+ self.order = order
|
|
|
+
|
|
|
+ def _alloc_memory(self, nc):
|
|
|
+ if self.order == 'c':
|
|
|
+ # Colomn-first order (C-style)
|
|
|
+ #
|
|
|
+ # <-- cw -->
|
|
|
+ # |--------|---------------------|^ ^
|
|
|
+ # | || | sh
|
|
|
+ # |--------|---------------------|| ch v
|
|
|
+ # | ||
|
|
|
+ # |--------|---------------------|v
|
|
|
+ # <------------ w --------------->
|
|
|
+ self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype)
|
|
|
+ elif self.order == 'f':
|
|
|
+ # Row-first order (Fortran-style)
|
|
|
+ #
|
|
|
+ # <-- sw -->
|
|
|
+ # <---- cw ---->
|
|
|
+ # |--------|---|^ ^
|
|
|
+ # | | || |
|
|
|
+ # | | || ch
|
|
|
+ # | | || |
|
|
|
+ # |--------|---|| h v
|
|
|
+ # | | ||
|
|
|
+ # | | ||
|
|
|
+ # | | ||
|
|
|
+ # |--------|---|v
|
|
|
+ self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype)
|
|
|
+
|
|
|
+ def update_block(self, i_st, j_st, h, w, prob_map):
|
|
|
+ if self.cache is None:
|
|
|
+ nc = prob_map.shape[2]
|
|
|
+ # Lazy allocation of memory
|
|
|
+ self._alloc_memory(nc)
|
|
|
+ self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map
|
|
|
+
|
|
|
+ def roll_cache(self):
|
|
|
+ if self.order == 'c':
|
|
|
+ self.cache = np.roll(self.cache, -self.sh, axis=0)
|
|
|
+ self.cache[self.sh:self.ch, :] = 0
|
|
|
+ elif self.order == 'f':
|
|
|
+ self.cache = np.roll(self.cache, -self.sw, axis=1)
|
|
|
+ self.cache[:, self.sw:self.cw] = 0
|
|
|
+
|
|
|
+ def get_block(self, i_st, j_st, h, w):
|
|
|
+ return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2)
|
|
|
+
|
|
|
+
|
|
|
+def slider_predict(predictor, img_file, save_dir, block_size, overlap,
|
|
|
+ transforms, invalid_value, merge_strategy):
|
|
|
+ """
|
|
|
+ Do inference using sliding windows.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ predictor (object): Object that implements `predict()` method.
|
|
|
+ img_file (str|tuple[str]): Image path(s).
|
|
|
+ save_dir (str): Directory that contains saved geotiff file.
|
|
|
+ block_size (list[int] | tuple[int] | int):
|
|
|
+ Size of block. If `block_size` is list or tuple, it should be in
|
|
|
+ (W, H) format.
|
|
|
+ overlap (list[int] | tuple[int] | int):
|
|
|
+ Overlap between two blocks. If `overlap` is list or tuple, it should
|
|
|
+ be in (W, H) format.
|
|
|
+ transforms (paddlers.transforms.Compose|None): Transforms for inputs. If
|
|
|
+ None, the transforms for evaluation process will be used.
|
|
|
+ invalid_value (int): Value that marks invalid pixels in output image.
|
|
|
+ Defaults to 255.
|
|
|
+ merge_strategy (str): Strategy to merge overlapping blocks. Choices are
|
|
|
+ {'keep_first', 'keep_last', 'vote', 'accum'}. 'keep_first' and
|
|
|
+ 'keep_last' means keeping the values of the first and the last block in
|
|
|
+ traversal order, respectively. 'vote' means applying a simple voting
|
|
|
+ strategy when there are conflicts in the overlapping pixels. 'accum'
|
|
|
+ means determining the class of an overlapping pixel according to
|
|
|
+ accumulated probabilities.
|
|
|
+ """
|
|
|
+
|
|
|
+ try:
|
|
|
+ from osgeo import gdal
|
|
|
+ except:
|
|
|
+ import gdal
|
|
|
+
|
|
|
+ if isinstance(block_size, int):
|
|
|
+ block_size = (block_size, block_size)
|
|
|
+ elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
|
|
|
+ block_size = tuple(block_size)
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ "`block_size` must be a tuple/list of length 2 or an integer.")
|
|
|
+ if isinstance(overlap, int):
|
|
|
+ overlap = (overlap, overlap)
|
|
|
+ elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
|
|
|
+ overlap = tuple(overlap)
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ "`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
+
|
|
|
+ if merge_strategy not in ('keep_first', 'keep_last', 'vote', 'accum'):
|
|
|
+ raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
+ format(merge_strategy))
|
|
|
+
|
|
|
+ step = np.array(
|
|
|
+ block_size, dtype=np.int32) - np.array(
|
|
|
+ overlap, dtype=np.int32)
|
|
|
+ if step[0] == 0 or step[1] == 0:
|
|
|
+ raise ValueError("`block_size` and `overlap` should not be equal.")
|
|
|
+
|
|
|
+ if isinstance(img_file, tuple):
|
|
|
+ if len(img_file) != 2:
|
|
|
+ raise ValueError("Tuple `img_file` must have the length of two.")
|
|
|
+ # Assume that two input images have the same size
|
|
|
+ src_data = gdal.Open(img_file[0])
|
|
|
+ src2_data = gdal.Open(img_file[1])
|
|
|
+ # Output name is the same as the name of the first image
|
|
|
+ file_name = osp.basename(osp.normpath(img_file[0]))
|
|
|
+ else:
|
|
|
+ src_data = gdal.Open(img_file)
|
|
|
+ file_name = osp.basename(osp.normpath(img_file))
|
|
|
+
|
|
|
+ # Get size of original raster
|
|
|
+ width = src_data.RasterXSize
|
|
|
+ height = src_data.RasterYSize
|
|
|
+ bands = src_data.RasterCount
|
|
|
+
|
|
|
+ if block_size[0] > width or block_size[1] > height:
|
|
|
+ raise ValueError("`block_size` should not be larger than image size.")
|
|
|
+
|
|
|
+ driver = gdal.GetDriverByName("GTiff")
|
|
|
+ if not osp.exists(save_dir):
|
|
|
+ os.makedirs(save_dir)
|
|
|
+ # Replace extension name with '.tif'
|
|
|
+ file_name = osp.splitext(file_name)[0] + ".tif"
|
|
|
+ save_file = osp.join(save_dir, file_name)
|
|
|
+ dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
|
|
|
+
|
|
|
+ # Set meta-information
|
|
|
+ dst_data.SetGeoTransform(src_data.GetGeoTransform())
|
|
|
+ dst_data.SetProjection(src_data.GetProjection())
|
|
|
+
|
|
|
+ # Initialize raster with `invalid_value`
|
|
|
+ band = dst_data.GetRasterBand(1)
|
|
|
+ band.WriteArray(
|
|
|
+ np.full(
|
|
|
+ (height, width), fill_value=invalid_value, dtype="uint8"))
|
|
|
+
|
|
|
+ if overlap == (0, 0) or block_size == (width, height):
|
|
|
+ # When there is no overlap or the whole image is used as input,
|
|
|
+ # use 'keep_last' strategy as it introduces least overheads
|
|
|
+ merge_strategy = 'keep_last'
|
|
|
+ if merge_strategy == 'vote':
|
|
|
+ logging.warning(
|
|
|
+ "Currently, a naive Python-implemented cache is used for aggregating voting results. "
|
|
|
+ "For higher performance in inferring large images, please set `merge_strategy` to 'keep_first', "
|
|
|
+ "'keep_last', or 'accum'.")
|
|
|
+ cache = SlowCache()
|
|
|
+ elif merge_strategy == 'accum':
|
|
|
+ cache = ProbCache(height, width, *block_size, *step)
|
|
|
+
|
|
|
+ prev_yoff, prev_xoff = None, None
|
|
|
+
|
|
|
+ for yoff in range(0, height, step[1]):
|
|
|
+ for xoff in range(0, width, step[0]):
|
|
|
+ xsize, ysize = block_size
|
|
|
+ if xoff + xsize > width:
|
|
|
+ xoff = width - xsize
|
|
|
+ if yoff + ysize > height:
|
|
|
+ yoff = height - ysize
|
|
|
+
|
|
|
+ # Read and fill
|
|
|
+ im = src_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
+ (1, 2, 0))
|
|
|
+
|
|
|
+ if isinstance(img_file, tuple):
|
|
|
+ im2 = src2_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
+ (1, 2, 0))
|
|
|
+ # Predict
|
|
|
+ out = predictor.predict((im, im2), transforms)
|
|
|
+ else:
|
|
|
+ # Predict
|
|
|
+ out = predictor.predict(im, transforms)
|
|
|
+
|
|
|
+ pred = out['label_map'].astype('uint8')
|
|
|
+ pred = pred[:ysize, :xsize]
|
|
|
+
|
|
|
+ # Deal with overlapping pixels
|
|
|
+ if merge_strategy == 'vote':
|
|
|
+ cache.push_block(yoff, xoff, ysize, xsize, pred)
|
|
|
+ pred = cache.get_block(yoff, xoff, ysize, xsize)
|
|
|
+ pred = pred.astype('uint8')
|
|
|
+ if prev_yoff is not None:
|
|
|
+ pop_h = yoff - prev_yoff
|
|
|
+ else:
|
|
|
+ pop_h = 0
|
|
|
+ if prev_xoff is not None:
|
|
|
+ if xoff < prev_xoff:
|
|
|
+ pop_w = xsize
|
|
|
+ else:
|
|
|
+ pop_w = xoff - prev_xoff
|
|
|
+ else:
|
|
|
+ pop_w = 0
|
|
|
+ cache.pop_block(prev_yoff, prev_xoff, pop_h, pop_w)
|
|
|
+ elif merge_strategy == 'keep_first':
|
|
|
+ rd_block = band.ReadAsArray(xoff, yoff, xsize, ysize)
|
|
|
+ mask = rd_block != invalid_value
|
|
|
+ pred = np.where(mask, rd_block, pred)
|
|
|
+ elif merge_strategy == 'keep_last':
|
|
|
+ pass
|
|
|
+ elif merge_strategy == 'accum':
|
|
|
+ prob = out['score_map']
|
|
|
+ prob = prob[:ysize, :xsize]
|
|
|
+ cache.update_block(0, yoff, ysize, xsize, prob)
|
|
|
+ pred = cache.get_block(0, yoff, ysize, xsize)
|
|
|
+ if xoff + step[0] >= width:
|
|
|
+ cache.roll_cache()
|
|
|
+
|
|
|
+ # Write to file
|
|
|
+ band.WriteArray(pred, xoff, yoff)
|
|
|
+ dst_data.FlushCache()
|
|
|
+
|
|
|
+ prev_xoff = xoff
|
|
|
+ prev_yoff = yoff
|
|
|
+
|
|
|
+ dst_data = None
|
|
|
+ logging.info("GeoTiff file saved in {}.".format(save_file))
|