Browse Source

Update CE statistics

Bobholamovic 2 years ago
parent
commit
afec4186fe

+ 1 - 1
test_tipc/configs/cd/fc_ef/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=20
+--num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=10
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=8
 --model_path:null

+ 1 - 1
test_tipc/configs/cd/fc_siam_conc/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=20
+--num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=10
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=8
 --model_path:null

+ 1 - 1
test_tipc/configs/cd/fc_siam_diff/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=20
+--num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=10
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=8
 --model_path:null

+ 3 - 1
test_tipc/configs/cd/fccdn/fccdn_levircd.yaml

@@ -5,4 +5,6 @@ _base_: ../_base_/levircd.yaml
 save_dir: ./test_tipc/output/cd/fccdn/
 
 model: !Node
-    type: FCCDN
+    type: FCCDN
+
+learning_rate: 0.001

+ 1 - 1
test_tipc/configs/cd/fccdn/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=10
+--num_epochs:lite_train_lite_infer=5|lite_train_whole_infer=5|whole_train_whole_infer=20
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=8
 --model_path:null

+ 1 - 1
test_tipc/configs/det/faster_rcnn/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10
+--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=20
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=4
 --model_path:null

+ 1 - 1
test_tipc/configs/det/yolov3/train_infer_python.txt

@@ -4,7 +4,7 @@ python:python
 gpu_list:0|0,1
 use_gpu:null|null
 --precision:null
---num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10
+--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=20
 --save_dir:adaptive
 --train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=4
 --model_path:null

+ 29 - 29
test_tipc/docs/test_train_inference_python.md

@@ -8,35 +8,35 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho
 
 | 任务类别 | 模型名称 | 单机单卡 | 单机多卡 | 参考预测精度 |
 | :----: | :----: | :----: | :----: | :----: |
-|  变化检测  | BIT | 正常训练 | 正常训练 | IoU=71.02% |
-|  变化检测  | CDNet | 正常训练 | 正常训练 | IoU=56.02% |
-|  变化检测  | ChangeFormer | 正常训练 | 正常训练 | IoU=61.65% |
-|  变化检测  | DSAMNet | 正常训练 | 正常训练 | IoU=69.76% |
-|  变化检测  | DSIFN | 正常训练 | 正常训练 | IoU=72.88% |
-|  变化检测  | SNUNet | 正常训练 | 正常训练 | IoU=68.46% |
-|  变化检测  | STANet | 正常训练 | 正常训练 | IoU=65.11% |
-|  变化检测  | FC-EF | 正常训练 | 正常训练 | IoU=64.22% |
-|  变化检测  | FC-Siam-conc | 正常训练 | 正常训练 | IoU=65.79% |
-|  变化检测  | FC-Siam-diff | 正常训练 | 正常训练 | IoU=61.23% |
-|  变化检测  | FCCDN | 正常训练 | 正常训练 | IoU=24.42% |
-|  场景分类  | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.42% |
-|  场景分类  | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.37% |
-|  场景分类  | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.58% |
-|  场景分类  | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.26% |
-|  图像复原  | DRN | 正常训练 | 正常训练 | PSNR=24.23 |
-|  图像复原  | ESRGAN | 正常训练 | 正常训练 | PSNR=21.30 |
-|  图像复原  | LESRCNN | 正常训练 | 正常训练 | PSNR=23.18 |
-|  目标检测  | Faster R-CNN | 正常训练 | 正常训练 | mAP=46.99% |
-|  目标检测  | PP-YOLO | 正常训练 | 正常训练 | mAP=56.02% |
-|  目标检测  | PP-YOLO Tiny | 正常训练 | 正常训练 | mAP=44.27% |
-|  目标检测  | PP-YOLOv2 | 正常训练 | 正常训练 | mAP=59.37% |
-|  目标检测  | YOLOv3 | 正常训练 | 正常训练 | mAP=47.33% |
-|  图像分割  | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.20 |
-|  图像分割  | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.59% |
-|  图像分割  | FarSeg | 正常训练 | 正常训练 | mIoU=50.45% |
-|  图像分割  | Fast-SCNN | 正常训练 | 正常训练 | mIoU=48.97% |
-|  图像分割  | HRNet | 正常训练 | 正常训练 | mIoU=33.49% |
-|  图像分割  | UNet | 正常训练 | 正常训练 | mIoU=72.64% |
+|  变化检测  | BIT | 正常训练 | 正常训练 | IoU=71.01% |
+|  变化检测  | CDNet | 正常训练 | 正常训练 | IoU=55.10% |
+|  变化检测  | ChangeFormer | 正常训练 | 正常训练 | IoU=61.09% |
+|  变化检测  | DSAMNet | 正常训练 | 正常训练 | IoU=69.02% |
+|  变化检测  | DSIFN | 正常训练 | 正常训练 | IoU=72.36% |
+|  变化检测  | FC-EF | 正常训练 | 正常训练 | IoU=57.18% |
+|  变化检测  | FC-Siam-conc | 正常训练 | 正常训练 | IoU=52.82% |
+|  变化检测  | FC-Siam-diff | 正常训练 | 正常训练 | IoU=58.30% |
+|  变化检测  | FCCDN | 正常训练 | 正常训练 | IoU=23.94% |
+|  变化检测  | SNUNet | 正常训练 | 正常训练 | IoU=67.66% |
+|  变化检测  | STANet | 正常训练 | 正常训练 | IoU=67.23% |
+|  场景分类  | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.53% |
+|  场景分类  | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.47% |
+|  场景分类  | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.57% |
+|  场景分类  | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.37% |
+|  目标检测  | Faster R-CNN | 正常训练 | 正常训练 | 暂无稳定精度 |
+|  目标检测  | PP-YOLO | 正常训练 | 正常训练 | 暂无稳定精度 |
+|  目标检测  | PP-YOLO Tiny | 正常训练 | 正常训练 | 暂无稳定精度 |
+|  目标检测  | PP-YOLOv2 | 正常训练 | 正常训练 | 暂无稳定精度 |
+|  目标检测  | YOLOv3 | 正常训练 | 正常训练 | 暂无稳定精度 |
+|  图像复原  | DRN | 正常训练 | 正常训练 | PSNR=24.14 |
+|  图像复原  | ESRGAN | 正常训练 | 正常训练 | PSNR=21.25 |
+|  图像复原  | LESRCNN | 正常训练 | 正常训练 | PSNR=22.96 |
+|  图像分割  | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.52% |
+|  图像分割  | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.41% |
+|  图像分割  | FarSeg | 正常训练 | 正常训练 | mIoU=50.74% |
+|  图像分割  | Fast-SCNN | 正常训练 | 正常训练 | mIoU=49.27% |
+|  图像分割  | HRNet | 正常训练 | 正常训练 | mIoU=33.03% |
+|  图像分割  | UNet | 正常训练 | 正常训练 | mIoU=72.58% |
 
 *注:参考预测精度为whole_train_whole_infer模式下单卡训练汇报的精度数据。*