| 
					
				 | 
			
			
				@@ -0,0 +1,141 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Licensed under the Apache License, Version 2.0 (the "License"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# you may not use this file except in compliance with the License. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# You may obtain a copy of the License at 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+#    http://www.apache.org/licenses/LICENSE-2.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Unless required by applicable law or agreed to in writing, software 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# distributed under the License is distributed on an "AS IS" BASIS, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# See the License for the specific language governing permissions and 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# limitations under the License. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import paddle 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import paddle.nn as nn 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import paddle.nn.functional as F 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from paddlers.models.ppdet.modeling import \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         initializer as init 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from paddlers.rs_models.seg.farseg import FPN, \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         ResNetEncoder,AsymmetricDecoder 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def conv_with_kaiming_uniform(use_gn=False, use_relu=False): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def make_conv(in_channels, out_channels, kernel_size, stride=1, dilation=1): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        conv = nn.Conv2D( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_channels, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            out_channels, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            kernel_size=kernel_size, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            stride=stride, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            padding=dilation * (kernel_size - 1) // 2, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            dilation=dilation, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            bias_attr=False if use_gn else True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        init.kaiming_uniform_(conv.weight, a=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if not use_gn: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            init.constant_(conv.bias, 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        module = [conv, ] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if use_gn: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise NotImplementedError 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if use_relu: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            module.append(nn.ReLU()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if len(module) > 1: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return nn.Sequential(*module) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return conv 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return make_conv 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+default_conv_block = conv_with_kaiming_uniform(use_gn=False, use_relu=False) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class FactSeg(nn.Layer): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     The FactSeg implementation based on PaddlePaddle. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     The original article refers to 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     A. Ma, J. Wang, Y. Zhong and Z. Zheng, "FactSeg: Foreground Activation 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     -Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      Imagery,"in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+       pp. 1-16, 2022, Art no. 5606216. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     Args: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         in_channels (int): The number of image channels for the input model. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         num_classes (int): The unique number of target classes. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         backbone (str, optional): A backbone network, models available in 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         `paddle.vision.models.resnet`. Default: resnet50. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         backbone_pretrained (bool, optional): Whether the backbone network uses 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+         IMAGENET pretrained weights. Default: True. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+     """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 in_channels, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 num_classes, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 backbone='resnet50', 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 backbone_pretrained=True): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        super(FactSeg, self).__init__() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        backbone = backbone.lower() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.resencoder = ResNetEncoder( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            backbone=backbone, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_channels=in_channels, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pretrained=backbone_pretrained) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.resencoder.resnet._sub_layers.pop('fc') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.fgfpn = FPN(in_channels_list=[256, 512, 1024, 2048], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         out_channels=256, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         conv_block=default_conv_block) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.bifpn = FPN(in_channels_list=[256, 512, 1024, 2048], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         out_channels=256, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                         conv_block=default_conv_block) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.fg_decoder = AsymmetricDecoder( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_channels=256, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            out_channels=128, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_feature_output_strides=(4, 8, 16, 32), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            out_feature_output_stride=4, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            conv_block=nn.Conv2D) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.bi_decoder = AsymmetricDecoder( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_channels=256, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            out_channels=128, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            in_feature_output_strides=(4, 8, 16, 32), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            out_feature_output_stride=4, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            conv_block=nn.Conv2D) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.fg_cls = nn.Conv2D(128, num_classes, kernel_size=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.bi_cls = nn.Conv2D(128, 1, kernel_size=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.config_loss = ['joint_loss'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.config_foreground = [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.fbattention_atttention = False 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def forward(self, x): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        feat_list = self.resencoder(x) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if 'skip_decoder' in []: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            fg_out = self.fgskip_deocder(feat_list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            bi_out = self.bgskip_deocder(feat_list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            forefeat_list = list(self.fgfpn(feat_list)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            binaryfeat_list = self.bifpn(feat_list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if self.fbattention_atttention: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                for i in range(len(binaryfeat_list)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    forefeat_list[i] = self.fbatt_block_list[i]( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        binaryfeat_list[i], forefeat_list[i]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            fg_out = self.fg_decoder(forefeat_list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            bi_out = self.bi_decoder(binaryfeat_list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        fg_pred = self.fg_cls(fg_out) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        bi_pred = self.bi_cls(bi_out) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        fg_pred = F.interpolate( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            fg_pred, scale_factor=4.0, mode='bilinear', align_corners=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        bi_pred = F.interpolate( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            bi_pred, scale_factor=4.0, mode='bilinear', align_corners=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.training: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return [fg_pred] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            binary_prob = F.sigmoid(bi_pred) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cls_prob = F.softmax(fg_pred, axis=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cls_prob[:, 0, :, :] = cls_prob[:, 0, :, :] * ( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                1 - binary_prob).squeeze(axis=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cls_prob[:, 1:, :, :] = cls_prob[:, 1:, :, :] * binary_prob 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            z = paddle.sum(cls_prob, axis=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            z = z.unsqueeze(axis=1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cls_prob = paddle.divide(cls_prob, z) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            return [cls_prob] 
			 |