|  | @@ -0,0 +1,141 @@
 | 
	
		
			
				|  |  | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +# Licensed under the Apache License, Version 2.0 (the "License");
 | 
	
		
			
				|  |  | +# you may not use this file except in compliance with the License.
 | 
	
		
			
				|  |  | +# You may obtain a copy of the License at
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    http://www.apache.org/licenses/LICENSE-2.0
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +# Unless required by applicable law or agreed to in writing, software
 | 
	
		
			
				|  |  | +# distributed under the License is distributed on an "AS IS" BASIS,
 | 
	
		
			
				|  |  | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
	
		
			
				|  |  | +# See the License for the specific language governing permissions and
 | 
	
		
			
				|  |  | +# limitations under the License.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import paddle
 | 
	
		
			
				|  |  | +import paddle.nn as nn
 | 
	
		
			
				|  |  | +import paddle.nn.functional as F
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +from paddlers.models.ppdet.modeling import \
 | 
	
		
			
				|  |  | +                         initializer as init
 | 
	
		
			
				|  |  | +from paddlers.rs_models.seg.farseg import FPN, \
 | 
	
		
			
				|  |  | +                         ResNetEncoder,AsymmetricDecoder
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def conv_with_kaiming_uniform(use_gn=False, use_relu=False):
 | 
	
		
			
				|  |  | +    def make_conv(in_channels, out_channels, kernel_size, stride=1, dilation=1):
 | 
	
		
			
				|  |  | +        conv = nn.Conv2D(
 | 
	
		
			
				|  |  | +            in_channels,
 | 
	
		
			
				|  |  | +            out_channels,
 | 
	
		
			
				|  |  | +            kernel_size=kernel_size,
 | 
	
		
			
				|  |  | +            stride=stride,
 | 
	
		
			
				|  |  | +            padding=dilation * (kernel_size - 1) // 2,
 | 
	
		
			
				|  |  | +            dilation=dilation,
 | 
	
		
			
				|  |  | +            bias_attr=False if use_gn else True)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        init.kaiming_uniform_(conv.weight, a=1)
 | 
	
		
			
				|  |  | +        if not use_gn:
 | 
	
		
			
				|  |  | +            init.constant_(conv.bias, 0)
 | 
	
		
			
				|  |  | +        module = [conv, ]
 | 
	
		
			
				|  |  | +        if use_gn:
 | 
	
		
			
				|  |  | +            raise NotImplementedError
 | 
	
		
			
				|  |  | +        if use_relu:
 | 
	
		
			
				|  |  | +            module.append(nn.ReLU())
 | 
	
		
			
				|  |  | +        if len(module) > 1:
 | 
	
		
			
				|  |  | +            return nn.Sequential(*module)
 | 
	
		
			
				|  |  | +        return conv
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    return make_conv
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +default_conv_block = conv_with_kaiming_uniform(use_gn=False, use_relu=False)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +class FactSeg(nn.Layer):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +     The FactSeg implementation based on PaddlePaddle.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +     The original article refers to
 | 
	
		
			
				|  |  | +     A. Ma, J. Wang, Y. Zhong and Z. Zheng, "FactSeg: Foreground Activation
 | 
	
		
			
				|  |  | +     -Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing
 | 
	
		
			
				|  |  | +      Imagery,"in IEEE Transactions on Geoscience and Remote Sensing, vol. 60,
 | 
	
		
			
				|  |  | +       pp. 1-16, 2022, Art no. 5606216.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +     Args:
 | 
	
		
			
				|  |  | +         in_channels (int): The number of image channels for the input model.
 | 
	
		
			
				|  |  | +         num_classes (int): The unique number of target classes.
 | 
	
		
			
				|  |  | +         backbone (str, optional): A backbone network, models available in
 | 
	
		
			
				|  |  | +         `paddle.vision.models.resnet`. Default: resnet50.
 | 
	
		
			
				|  |  | +         backbone_pretrained (bool, optional): Whether the backbone network uses
 | 
	
		
			
				|  |  | +         IMAGENET pretrained weights. Default: True.
 | 
	
		
			
				|  |  | +     """
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def __init__(self,
 | 
	
		
			
				|  |  | +                 in_channels,
 | 
	
		
			
				|  |  | +                 num_classes,
 | 
	
		
			
				|  |  | +                 backbone='resnet50',
 | 
	
		
			
				|  |  | +                 backbone_pretrained=True):
 | 
	
		
			
				|  |  | +        super(FactSeg, self).__init__()
 | 
	
		
			
				|  |  | +        backbone = backbone.lower()
 | 
	
		
			
				|  |  | +        self.resencoder = ResNetEncoder(
 | 
	
		
			
				|  |  | +            backbone=backbone,
 | 
	
		
			
				|  |  | +            in_channels=in_channels,
 | 
	
		
			
				|  |  | +            pretrained=backbone_pretrained)
 | 
	
		
			
				|  |  | +        self.resencoder.resnet._sub_layers.pop('fc')
 | 
	
		
			
				|  |  | +        self.fgfpn = FPN(in_channels_list=[256, 512, 1024, 2048],
 | 
	
		
			
				|  |  | +                         out_channels=256,
 | 
	
		
			
				|  |  | +                         conv_block=default_conv_block)
 | 
	
		
			
				|  |  | +        self.bifpn = FPN(in_channels_list=[256, 512, 1024, 2048],
 | 
	
		
			
				|  |  | +                         out_channels=256,
 | 
	
		
			
				|  |  | +                         conv_block=default_conv_block)
 | 
	
		
			
				|  |  | +        self.fg_decoder = AsymmetricDecoder(
 | 
	
		
			
				|  |  | +            in_channels=256,
 | 
	
		
			
				|  |  | +            out_channels=128,
 | 
	
		
			
				|  |  | +            in_feature_output_strides=(4, 8, 16, 32),
 | 
	
		
			
				|  |  | +            out_feature_output_stride=4,
 | 
	
		
			
				|  |  | +            conv_block=nn.Conv2D)
 | 
	
		
			
				|  |  | +        self.bi_decoder = AsymmetricDecoder(
 | 
	
		
			
				|  |  | +            in_channels=256,
 | 
	
		
			
				|  |  | +            out_channels=128,
 | 
	
		
			
				|  |  | +            in_feature_output_strides=(4, 8, 16, 32),
 | 
	
		
			
				|  |  | +            out_feature_output_stride=4,
 | 
	
		
			
				|  |  | +            conv_block=nn.Conv2D)
 | 
	
		
			
				|  |  | +        self.fg_cls = nn.Conv2D(128, num_classes, kernel_size=1)
 | 
	
		
			
				|  |  | +        self.bi_cls = nn.Conv2D(128, 1, kernel_size=1)
 | 
	
		
			
				|  |  | +        self.config_loss = ['joint_loss']
 | 
	
		
			
				|  |  | +        self.config_foreground = []
 | 
	
		
			
				|  |  | +        self.fbattention_atttention = False
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    def forward(self, x):
 | 
	
		
			
				|  |  | +        feat_list = self.resencoder(x)
 | 
	
		
			
				|  |  | +        if 'skip_decoder' in []:
 | 
	
		
			
				|  |  | +            fg_out = self.fgskip_deocder(feat_list)
 | 
	
		
			
				|  |  | +            bi_out = self.bgskip_deocder(feat_list)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            forefeat_list = list(self.fgfpn(feat_list))
 | 
	
		
			
				|  |  | +            binaryfeat_list = self.bifpn(feat_list)
 | 
	
		
			
				|  |  | +            if self.fbattention_atttention:
 | 
	
		
			
				|  |  | +                for i in range(len(binaryfeat_list)):
 | 
	
		
			
				|  |  | +                    forefeat_list[i] = self.fbatt_block_list[i](
 | 
	
		
			
				|  |  | +                        binaryfeat_list[i], forefeat_list[i])
 | 
	
		
			
				|  |  | +            fg_out = self.fg_decoder(forefeat_list)
 | 
	
		
			
				|  |  | +            bi_out = self.bi_decoder(binaryfeat_list)
 | 
	
		
			
				|  |  | +        fg_pred = self.fg_cls(fg_out)
 | 
	
		
			
				|  |  | +        bi_pred = self.bi_cls(bi_out)
 | 
	
		
			
				|  |  | +        fg_pred = F.interpolate(
 | 
	
		
			
				|  |  | +            fg_pred, scale_factor=4.0, mode='bilinear', align_corners=True)
 | 
	
		
			
				|  |  | +        bi_pred = F.interpolate(
 | 
	
		
			
				|  |  | +            bi_pred, scale_factor=4.0, mode='bilinear', align_corners=True)
 | 
	
		
			
				|  |  | +        if self.training:
 | 
	
		
			
				|  |  | +            return [fg_pred]
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            binary_prob = F.sigmoid(bi_pred)
 | 
	
		
			
				|  |  | +            cls_prob = F.softmax(fg_pred, axis=1)
 | 
	
		
			
				|  |  | +            cls_prob[:, 0, :, :] = cls_prob[:, 0, :, :] * (
 | 
	
		
			
				|  |  | +                1 - binary_prob).squeeze(axis=1)
 | 
	
		
			
				|  |  | +            cls_prob[:, 1:, :, :] = cls_prob[:, 1:, :, :] * binary_prob
 | 
	
		
			
				|  |  | +            z = paddle.sum(cls_prob, axis=1)
 | 
	
		
			
				|  |  | +            z = z.unsqueeze(axis=1)
 | 
	
		
			
				|  |  | +            cls_prob = paddle.divide(cls_prob, z)
 | 
	
		
			
				|  |  | +            return [cls_prob]
 |