|
@@ -1,442 +1,442 @@
|
|
|
-# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
-#
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
-# You may obtain a copy of the License at
|
|
|
-#
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-#
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
-# limitations under the License.
|
|
|
-"""
|
|
|
-This code is based on https://github.com/AgentMaker/Paddle-Image-Models
|
|
|
-Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
|
|
|
-Apache License [see LICENSE for details]
|
|
|
-"""
|
|
|
-
|
|
|
-import paddle
|
|
|
-import paddle.nn as nn
|
|
|
-
|
|
|
-__all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"]
|
|
|
-
|
|
|
-
|
|
|
-class SELayer(nn.Layer):
|
|
|
- def __init__(self, inplanes, reduction=16):
|
|
|
- super(SELayer, self).__init__()
|
|
|
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
|
- self.fc = nn.Sequential(
|
|
|
- nn.Linear(
|
|
|
- inplanes, inplanes // reduction, bias_attr=False),
|
|
|
- nn.ReLU(),
|
|
|
- nn.Linear(
|
|
|
- inplanes // reduction, inplanes, bias_attr=False),
|
|
|
- nn.Sigmoid(), )
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- b, c, _, _ = x.shape
|
|
|
- y = self.avg_pool(x).reshape((b, c))
|
|
|
- y = self.fc(y).reshape((b, c, 1, 1))
|
|
|
- return x * paddle.expand(y, shape=x.shape)
|
|
|
-
|
|
|
-
|
|
|
-class HS(nn.Layer):
|
|
|
- def __init__(self):
|
|
|
- super(HS, self).__init__()
|
|
|
- self.relu6 = nn.ReLU6()
|
|
|
-
|
|
|
- def forward(self, inputs):
|
|
|
- return inputs * self.relu6(inputs + 3) / 6
|
|
|
-
|
|
|
-
|
|
|
-class Conv(nn.Sequential):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- in_channels,
|
|
|
- out_channels,
|
|
|
- kernel_size,
|
|
|
- stride=1,
|
|
|
- padding=0,
|
|
|
- groups=1,
|
|
|
- activation="ReLU",
|
|
|
- bn_momentum=0.9, ):
|
|
|
- super(Conv, self).__init__()
|
|
|
- self.add_sublayer(
|
|
|
- "norm", nn.BatchNorm2D(
|
|
|
- in_channels, momentum=bn_momentum))
|
|
|
- if activation == "ReLU":
|
|
|
- self.add_sublayer("activation", nn.ReLU())
|
|
|
- elif activation == "HS":
|
|
|
- self.add_sublayer("activation", HS())
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
- self.add_sublayer(
|
|
|
- "conv",
|
|
|
- nn.Conv2D(
|
|
|
- in_channels,
|
|
|
- out_channels,
|
|
|
- kernel_size=kernel_size,
|
|
|
- stride=stride,
|
|
|
- padding=padding,
|
|
|
- bias_attr=False,
|
|
|
- groups=groups, ), )
|
|
|
-
|
|
|
-
|
|
|
-def ShuffleLayer(x, groups):
|
|
|
- batchsize, num_channels, height, width = x.shape
|
|
|
- channels_per_group = num_channels // groups
|
|
|
- # Reshape
|
|
|
- x = x.reshape((batchsize, groups, channels_per_group, height, width))
|
|
|
- # Transpose
|
|
|
- x = x.transpose((0, 2, 1, 3, 4))
|
|
|
- # Reshape
|
|
|
- x = x.reshape((batchsize, groups * channels_per_group, height, width))
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-def ShuffleLayerTrans(x, groups):
|
|
|
- batchsize, num_channels, height, width = x.shape
|
|
|
- channels_per_group = num_channels // groups
|
|
|
- # Reshape
|
|
|
- x = x.reshape((batchsize, channels_per_group, groups, height, width))
|
|
|
- # Transpose
|
|
|
- x = x.transpose((0, 2, 1, 3, 4))
|
|
|
- # Reshape
|
|
|
- x = x.reshape((batchsize, channels_per_group * groups, height, width))
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-class CondenseLGC(nn.Layer):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- in_channels,
|
|
|
- out_channels,
|
|
|
- kernel_size,
|
|
|
- stride=1,
|
|
|
- padding=0,
|
|
|
- groups=1,
|
|
|
- activation="ReLU", ):
|
|
|
- super(CondenseLGC, self).__init__()
|
|
|
- self.in_channels = in_channels
|
|
|
- self.out_channels = out_channels
|
|
|
- self.groups = groups
|
|
|
- self.norm = nn.BatchNorm2D(self.in_channels)
|
|
|
- if activation == "ReLU":
|
|
|
- self.activation = nn.ReLU()
|
|
|
- elif activation == "HS":
|
|
|
- self.activation = HS()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
- self.conv = nn.Conv2D(
|
|
|
- self.in_channels,
|
|
|
- self.out_channels,
|
|
|
- kernel_size=kernel_size,
|
|
|
- stride=stride,
|
|
|
- padding=padding,
|
|
|
- groups=self.groups,
|
|
|
- bias_attr=False, )
|
|
|
- self.register_buffer(
|
|
|
- "index", paddle.zeros(
|
|
|
- (self.in_channels, ), dtype="int64"))
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x = paddle.index_select(x, self.index, axis=1)
|
|
|
- x = self.norm(x)
|
|
|
- x = self.activation(x)
|
|
|
- x = self.conv(x)
|
|
|
- x = ShuffleLayer(x, self.groups)
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-class CondenseSFR(nn.Layer):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- in_channels,
|
|
|
- out_channels,
|
|
|
- kernel_size,
|
|
|
- stride=1,
|
|
|
- padding=0,
|
|
|
- groups=1,
|
|
|
- activation="ReLU", ):
|
|
|
- super(CondenseSFR, self).__init__()
|
|
|
- self.in_channels = in_channels
|
|
|
- self.out_channels = out_channels
|
|
|
- self.groups = groups
|
|
|
- self.norm = nn.BatchNorm2D(self.in_channels)
|
|
|
- if activation == "ReLU":
|
|
|
- self.activation = nn.ReLU()
|
|
|
- elif activation == "HS":
|
|
|
- self.activation = HS()
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
- self.conv = nn.Conv2D(
|
|
|
- self.in_channels,
|
|
|
- self.out_channels,
|
|
|
- kernel_size=kernel_size,
|
|
|
- padding=padding,
|
|
|
- groups=self.groups,
|
|
|
- bias_attr=False,
|
|
|
- stride=stride, )
|
|
|
- self.register_buffer("index",
|
|
|
- paddle.zeros(
|
|
|
- (self.out_channels, self.out_channels)))
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x = self.norm(x)
|
|
|
- x = self.activation(x)
|
|
|
- x = ShuffleLayerTrans(x, self.groups)
|
|
|
- x = self.conv(x) # SIZE: N, C, H, W
|
|
|
- N, C, H, W = x.shape
|
|
|
- x = x.reshape((N, C, H * W))
|
|
|
- x = x.transpose((0, 2, 1)) # SIZE: N, HW, C
|
|
|
- # x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
|
|
|
- x = paddle.matmul(x, self.index)
|
|
|
- x = x.transpose((0, 2, 1)) # SIZE: N, C, HW
|
|
|
- x = x.reshape((N, C, H, W)) # SIZE: N, C, HW
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-class _SFR_DenseLayer(nn.Layer):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- in_channels,
|
|
|
- growth_rate,
|
|
|
- group_1x1,
|
|
|
- group_3x3,
|
|
|
- group_trans,
|
|
|
- bottleneck,
|
|
|
- activation,
|
|
|
- use_se=False, ):
|
|
|
- super(_SFR_DenseLayer, self).__init__()
|
|
|
- self.group_1x1 = group_1x1
|
|
|
- self.group_3x3 = group_3x3
|
|
|
- self.group_trans = group_trans
|
|
|
- self.use_se = use_se
|
|
|
- # 1x1 conv i --> b*k
|
|
|
- self.conv_1 = CondenseLGC(
|
|
|
- in_channels,
|
|
|
- bottleneck * growth_rate,
|
|
|
- kernel_size=1,
|
|
|
- groups=self.group_1x1,
|
|
|
- activation=activation, )
|
|
|
- # 3x3 conv b*k --> k
|
|
|
- self.conv_2 = Conv(
|
|
|
- bottleneck * growth_rate,
|
|
|
- growth_rate,
|
|
|
- kernel_size=3,
|
|
|
- padding=1,
|
|
|
- groups=self.group_3x3,
|
|
|
- activation=activation, )
|
|
|
- # 1x1 res conv k(8-16-32)--> i (k*l)
|
|
|
- self.sfr = CondenseSFR(
|
|
|
- growth_rate,
|
|
|
- in_channels,
|
|
|
- kernel_size=1,
|
|
|
- groups=self.group_trans,
|
|
|
- activation=activation, )
|
|
|
- if self.use_se:
|
|
|
- self.se = SELayer(inplanes=growth_rate, reduction=1)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x_ = x
|
|
|
- x = self.conv_1(x)
|
|
|
- x = self.conv_2(x)
|
|
|
- if self.use_se:
|
|
|
- x = self.se(x)
|
|
|
- sfr_feature = self.sfr(x)
|
|
|
- y = x_ + sfr_feature
|
|
|
- return paddle.concat([y, x], 1)
|
|
|
-
|
|
|
-
|
|
|
-class _SFR_DenseBlock(nn.Sequential):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- num_layers,
|
|
|
- in_channels,
|
|
|
- growth_rate,
|
|
|
- group_1x1,
|
|
|
- group_3x3,
|
|
|
- group_trans,
|
|
|
- bottleneck,
|
|
|
- activation,
|
|
|
- use_se, ):
|
|
|
- super(_SFR_DenseBlock, self).__init__()
|
|
|
- for i in range(num_layers):
|
|
|
- layer = _SFR_DenseLayer(
|
|
|
- in_channels + i * growth_rate,
|
|
|
- growth_rate,
|
|
|
- group_1x1,
|
|
|
- group_3x3,
|
|
|
- group_trans,
|
|
|
- bottleneck,
|
|
|
- activation,
|
|
|
- use_se, )
|
|
|
- self.add_sublayer("denselayer_%d" % (i + 1), layer)
|
|
|
-
|
|
|
-
|
|
|
-class _Transition(nn.Layer):
|
|
|
- def __init__(self):
|
|
|
- super(_Transition, self).__init__()
|
|
|
- self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- x = self.pool(x)
|
|
|
- return x
|
|
|
-
|
|
|
-
|
|
|
-class CondenseNetV2(nn.Layer):
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- stages,
|
|
|
- growth,
|
|
|
- HS_start_block,
|
|
|
- SE_start_block,
|
|
|
- fc_channel,
|
|
|
- group_1x1,
|
|
|
- group_3x3,
|
|
|
- group_trans,
|
|
|
- bottleneck,
|
|
|
- last_se_reduction,
|
|
|
- in_channels=3,
|
|
|
- class_num=1000, ):
|
|
|
- super(CondenseNetV2, self).__init__()
|
|
|
- self.stages = stages
|
|
|
- self.growth = growth
|
|
|
- self.in_channels = in_channels
|
|
|
- self.class_num = class_num
|
|
|
- self.last_se_reduction = last_se_reduction
|
|
|
- assert len(self.stages) == len(self.growth)
|
|
|
- self.progress = 0.0
|
|
|
-
|
|
|
- self.init_stride = 2
|
|
|
- self.pool_size = 7
|
|
|
-
|
|
|
- self.features = nn.Sequential()
|
|
|
- # Initial nChannels should be 3
|
|
|
- self.num_features = 2 * self.growth[0]
|
|
|
- # Dense-block 1 (224x224)
|
|
|
- self.features.add_sublayer(
|
|
|
- "init_conv",
|
|
|
- nn.Conv2D(
|
|
|
- in_channels,
|
|
|
- self.num_features,
|
|
|
- kernel_size=3,
|
|
|
- stride=self.init_stride,
|
|
|
- padding=1,
|
|
|
- bias_attr=False, ), )
|
|
|
- for i in range(len(self.stages)):
|
|
|
- activation = "HS" if i >= HS_start_block else "ReLU"
|
|
|
- use_se = True if i >= SE_start_block else False
|
|
|
- # Dense-block i
|
|
|
- self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
|
|
|
- activation, use_se)
|
|
|
-
|
|
|
- self.fc = nn.Linear(self.num_features, fc_channel)
|
|
|
- self.fc_act = HS()
|
|
|
-
|
|
|
- # Classifier layer
|
|
|
- if class_num > 0:
|
|
|
- self.classifier = nn.Linear(fc_channel, class_num)
|
|
|
- self._initialize()
|
|
|
-
|
|
|
- def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
|
|
|
- activation, use_se):
|
|
|
- # Check if ith is the last one
|
|
|
- last = i == len(self.stages) - 1
|
|
|
- block = _SFR_DenseBlock(
|
|
|
- num_layers=self.stages[i],
|
|
|
- in_channels=self.num_features,
|
|
|
- growth_rate=self.growth[i],
|
|
|
- group_1x1=group_1x1,
|
|
|
- group_3x3=group_3x3,
|
|
|
- group_trans=group_trans,
|
|
|
- bottleneck=bottleneck,
|
|
|
- activation=activation,
|
|
|
- use_se=use_se, )
|
|
|
- self.features.add_sublayer("denseblock_%d" % (i + 1), block)
|
|
|
- self.num_features += self.stages[i] * self.growth[i]
|
|
|
- if not last:
|
|
|
- trans = _Transition()
|
|
|
- self.features.add_sublayer("transition_%d" % (i + 1), trans)
|
|
|
- else:
|
|
|
- self.features.add_sublayer("norm_last",
|
|
|
- nn.BatchNorm2D(self.num_features))
|
|
|
- self.features.add_sublayer("relu_last", nn.ReLU())
|
|
|
- self.features.add_sublayer("pool_last",
|
|
|
- nn.AvgPool2D(self.pool_size))
|
|
|
- # if useSE:
|
|
|
- self.features.add_sublayer(
|
|
|
- "se_last",
|
|
|
- SELayer(
|
|
|
- self.num_features, reduction=self.last_se_reduction))
|
|
|
-
|
|
|
- def forward(self, x):
|
|
|
- features = self.features(x)
|
|
|
- out = features.reshape((features.shape[0], features.shape[1] *
|
|
|
- features.shape[2] * features.shape[3]))
|
|
|
- out = self.fc(out)
|
|
|
- out = self.fc_act(out)
|
|
|
-
|
|
|
- if self.class_num > 0:
|
|
|
- out = self.classifier(out)
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
- def _initialize(self):
|
|
|
- # Initialize
|
|
|
- for m in self.sublayers():
|
|
|
- if isinstance(m, nn.Conv2D):
|
|
|
- nn.initializer.KaimingNormal()(m.weight)
|
|
|
- elif isinstance(m, nn.BatchNorm2D):
|
|
|
- nn.initializer.Constant(value=1.0)(m.weight)
|
|
|
- nn.initializer.Constant(value=0.0)(m.bias)
|
|
|
-
|
|
|
-
|
|
|
-def CondenseNetV2_a(**kwargs):
|
|
|
- model = CondenseNetV2(
|
|
|
- stages=[1, 1, 4, 6, 8],
|
|
|
- growth=[8, 8, 16, 32, 64],
|
|
|
- HS_start_block=2,
|
|
|
- SE_start_block=3,
|
|
|
- fc_channel=828,
|
|
|
- group_1x1=8,
|
|
|
- group_3x3=8,
|
|
|
- group_trans=8,
|
|
|
- bottleneck=4,
|
|
|
- last_se_reduction=16,
|
|
|
- **kwargs)
|
|
|
- return model
|
|
|
-
|
|
|
-
|
|
|
-def CondenseNetV2_b(**kwargs):
|
|
|
- model = CondenseNetV2(
|
|
|
- stages=[2, 4, 6, 8, 6],
|
|
|
- growth=[6, 12, 24, 48, 96],
|
|
|
- HS_start_block=2,
|
|
|
- SE_start_block=3,
|
|
|
- fc_channel=1024,
|
|
|
- group_1x1=6,
|
|
|
- group_3x3=6,
|
|
|
- group_trans=6,
|
|
|
- bottleneck=4,
|
|
|
- last_se_reduction=16,
|
|
|
- **kwargs)
|
|
|
- return model
|
|
|
-
|
|
|
-
|
|
|
-def CondenseNetV2_c(**kwargs):
|
|
|
- model = CondenseNetV2(
|
|
|
- stages=[4, 6, 8, 10, 8],
|
|
|
- growth=[8, 16, 32, 64, 128],
|
|
|
- HS_start_block=2,
|
|
|
- SE_start_block=3,
|
|
|
- fc_channel=1024,
|
|
|
- group_1x1=8,
|
|
|
- group_3x3=8,
|
|
|
- group_trans=8,
|
|
|
- bottleneck=4,
|
|
|
- last_se_reduction=16,
|
|
|
- **kwargs)
|
|
|
- return model
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+"""
|
|
|
+This code is based on https://github.com/AgentMaker/Paddle-Image-Models
|
|
|
+Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
|
|
|
+Apache License [see LICENSE for details]
|
|
|
+"""
|
|
|
+
|
|
|
+import paddle
|
|
|
+import paddle.nn as nn
|
|
|
+
|
|
|
+__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"]
|
|
|
+
|
|
|
+
|
|
|
+class SELayer(nn.Layer):
|
|
|
+ def __init__(self, inplanes, reduction=16):
|
|
|
+ super(SELayer, self).__init__()
|
|
|
+ self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
|
+ self.fc = nn.Sequential(
|
|
|
+ nn.Linear(
|
|
|
+ inplanes, inplanes // reduction, bias_attr=False),
|
|
|
+ nn.ReLU(),
|
|
|
+ nn.Linear(
|
|
|
+ inplanes // reduction, inplanes, bias_attr=False),
|
|
|
+ nn.Sigmoid(), )
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ b, c, _, _ = x.shape
|
|
|
+ y = self.avg_pool(x).reshape((b, c))
|
|
|
+ y = self.fc(y).reshape((b, c, 1, 1))
|
|
|
+ return x * paddle.expand(y, shape=x.shape)
|
|
|
+
|
|
|
+
|
|
|
+class HS(nn.Layer):
|
|
|
+ def __init__(self):
|
|
|
+ super(HS, self).__init__()
|
|
|
+ self.relu6 = nn.ReLU6()
|
|
|
+
|
|
|
+ def forward(self, inputs):
|
|
|
+ return inputs * self.relu6(inputs + 3) / 6
|
|
|
+
|
|
|
+
|
|
|
+class Conv(nn.Sequential):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ in_channels,
|
|
|
+ out_channels,
|
|
|
+ kernel_size,
|
|
|
+ stride=1,
|
|
|
+ padding=0,
|
|
|
+ groups=1,
|
|
|
+ activation="ReLU",
|
|
|
+ bn_momentum=0.9, ):
|
|
|
+ super(Conv, self).__init__()
|
|
|
+ self.add_sublayer(
|
|
|
+ "norm", nn.BatchNorm2D(
|
|
|
+ in_channels, momentum=bn_momentum))
|
|
|
+ if activation == "ReLU":
|
|
|
+ self.add_sublayer("activation", nn.ReLU())
|
|
|
+ elif activation == "HS":
|
|
|
+ self.add_sublayer("activation", HS())
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+ self.add_sublayer(
|
|
|
+ "conv",
|
|
|
+ nn.Conv2D(
|
|
|
+ in_channels,
|
|
|
+ out_channels,
|
|
|
+ kernel_size=kernel_size,
|
|
|
+ stride=stride,
|
|
|
+ padding=padding,
|
|
|
+ bias_attr=False,
|
|
|
+ groups=groups, ), )
|
|
|
+
|
|
|
+
|
|
|
+def ShuffleLayer(x, groups):
|
|
|
+ batchsize, num_channels, height, width = x.shape
|
|
|
+ channels_per_group = num_channels // groups
|
|
|
+ # Reshape
|
|
|
+ x = x.reshape((batchsize, groups, channels_per_group, height, width))
|
|
|
+ # Transpose
|
|
|
+ x = x.transpose((0, 2, 1, 3, 4))
|
|
|
+ # Reshape
|
|
|
+ x = x.reshape((batchsize, groups * channels_per_group, height, width))
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+def ShuffleLayerTrans(x, groups):
|
|
|
+ batchsize, num_channels, height, width = x.shape
|
|
|
+ channels_per_group = num_channels // groups
|
|
|
+ # Reshape
|
|
|
+ x = x.reshape((batchsize, channels_per_group, groups, height, width))
|
|
|
+ # Transpose
|
|
|
+ x = x.transpose((0, 2, 1, 3, 4))
|
|
|
+ # Reshape
|
|
|
+ x = x.reshape((batchsize, channels_per_group * groups, height, width))
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class CondenseLGC(nn.Layer):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ in_channels,
|
|
|
+ out_channels,
|
|
|
+ kernel_size,
|
|
|
+ stride=1,
|
|
|
+ padding=0,
|
|
|
+ groups=1,
|
|
|
+ activation="ReLU", ):
|
|
|
+ super(CondenseLGC, self).__init__()
|
|
|
+ self.in_channels = in_channels
|
|
|
+ self.out_channels = out_channels
|
|
|
+ self.groups = groups
|
|
|
+ self.norm = nn.BatchNorm2D(self.in_channels)
|
|
|
+ if activation == "ReLU":
|
|
|
+ self.activation = nn.ReLU()
|
|
|
+ elif activation == "HS":
|
|
|
+ self.activation = HS()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+ self.conv = nn.Conv2D(
|
|
|
+ self.in_channels,
|
|
|
+ self.out_channels,
|
|
|
+ kernel_size=kernel_size,
|
|
|
+ stride=stride,
|
|
|
+ padding=padding,
|
|
|
+ groups=self.groups,
|
|
|
+ bias_attr=False, )
|
|
|
+ self.register_buffer(
|
|
|
+ "index", paddle.zeros(
|
|
|
+ (self.in_channels, ), dtype="int64"))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = paddle.index_select(x, self.index, axis=1)
|
|
|
+ x = self.norm(x)
|
|
|
+ x = self.activation(x)
|
|
|
+ x = self.conv(x)
|
|
|
+ x = ShuffleLayer(x, self.groups)
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class CondenseSFR(nn.Layer):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ in_channels,
|
|
|
+ out_channels,
|
|
|
+ kernel_size,
|
|
|
+ stride=1,
|
|
|
+ padding=0,
|
|
|
+ groups=1,
|
|
|
+ activation="ReLU", ):
|
|
|
+ super(CondenseSFR, self).__init__()
|
|
|
+ self.in_channels = in_channels
|
|
|
+ self.out_channels = out_channels
|
|
|
+ self.groups = groups
|
|
|
+ self.norm = nn.BatchNorm2D(self.in_channels)
|
|
|
+ if activation == "ReLU":
|
|
|
+ self.activation = nn.ReLU()
|
|
|
+ elif activation == "HS":
|
|
|
+ self.activation = HS()
|
|
|
+ else:
|
|
|
+ raise NotImplementedError
|
|
|
+ self.conv = nn.Conv2D(
|
|
|
+ self.in_channels,
|
|
|
+ self.out_channels,
|
|
|
+ kernel_size=kernel_size,
|
|
|
+ padding=padding,
|
|
|
+ groups=self.groups,
|
|
|
+ bias_attr=False,
|
|
|
+ stride=stride, )
|
|
|
+ self.register_buffer("index",
|
|
|
+ paddle.zeros(
|
|
|
+ (self.out_channels, self.out_channels)))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.norm(x)
|
|
|
+ x = self.activation(x)
|
|
|
+ x = ShuffleLayerTrans(x, self.groups)
|
|
|
+ x = self.conv(x) # SIZE: N, C, H, W
|
|
|
+ N, C, H, W = x.shape
|
|
|
+ x = x.reshape((N, C, H * W))
|
|
|
+ x = x.transpose((0, 2, 1)) # SIZE: N, HW, C
|
|
|
+ # x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
|
|
|
+ x = paddle.matmul(x, self.index)
|
|
|
+ x = x.transpose((0, 2, 1)) # SIZE: N, C, HW
|
|
|
+ x = x.reshape((N, C, H, W)) # SIZE: N, C, HW
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class _SFR_DenseLayer(nn.Layer):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ in_channels,
|
|
|
+ growth_rate,
|
|
|
+ group_1x1,
|
|
|
+ group_3x3,
|
|
|
+ group_trans,
|
|
|
+ bottleneck,
|
|
|
+ activation,
|
|
|
+ use_se=False, ):
|
|
|
+ super(_SFR_DenseLayer, self).__init__()
|
|
|
+ self.group_1x1 = group_1x1
|
|
|
+ self.group_3x3 = group_3x3
|
|
|
+ self.group_trans = group_trans
|
|
|
+ self.use_se = use_se
|
|
|
+ # 1x1 conv i --> b*k
|
|
|
+ self.conv_1 = CondenseLGC(
|
|
|
+ in_channels,
|
|
|
+ bottleneck * growth_rate,
|
|
|
+ kernel_size=1,
|
|
|
+ groups=self.group_1x1,
|
|
|
+ activation=activation, )
|
|
|
+ # 3x3 conv b*k --> k
|
|
|
+ self.conv_2 = Conv(
|
|
|
+ bottleneck * growth_rate,
|
|
|
+ growth_rate,
|
|
|
+ kernel_size=3,
|
|
|
+ padding=1,
|
|
|
+ groups=self.group_3x3,
|
|
|
+ activation=activation, )
|
|
|
+ # 1x1 res conv k(8-16-32)--> i (k*l)
|
|
|
+ self.sfr = CondenseSFR(
|
|
|
+ growth_rate,
|
|
|
+ in_channels,
|
|
|
+ kernel_size=1,
|
|
|
+ groups=self.group_trans,
|
|
|
+ activation=activation, )
|
|
|
+ if self.use_se:
|
|
|
+ self.se = SELayer(inplanes=growth_rate, reduction=1)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x_ = x
|
|
|
+ x = self.conv_1(x)
|
|
|
+ x = self.conv_2(x)
|
|
|
+ if self.use_se:
|
|
|
+ x = self.se(x)
|
|
|
+ sfr_feature = self.sfr(x)
|
|
|
+ y = x_ + sfr_feature
|
|
|
+ return paddle.concat([y, x], 1)
|
|
|
+
|
|
|
+
|
|
|
+class _SFR_DenseBlock(nn.Sequential):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ num_layers,
|
|
|
+ in_channels,
|
|
|
+ growth_rate,
|
|
|
+ group_1x1,
|
|
|
+ group_3x3,
|
|
|
+ group_trans,
|
|
|
+ bottleneck,
|
|
|
+ activation,
|
|
|
+ use_se, ):
|
|
|
+ super(_SFR_DenseBlock, self).__init__()
|
|
|
+ for i in range(num_layers):
|
|
|
+ layer = _SFR_DenseLayer(
|
|
|
+ in_channels + i * growth_rate,
|
|
|
+ growth_rate,
|
|
|
+ group_1x1,
|
|
|
+ group_3x3,
|
|
|
+ group_trans,
|
|
|
+ bottleneck,
|
|
|
+ activation,
|
|
|
+ use_se, )
|
|
|
+ self.add_sublayer("denselayer_%d" % (i + 1), layer)
|
|
|
+
|
|
|
+
|
|
|
+class _Transition(nn.Layer):
|
|
|
+ def __init__(self):
|
|
|
+ super(_Transition, self).__init__()
|
|
|
+ self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ x = self.pool(x)
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+class CondenseNetV2(nn.Layer):
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ stages,
|
|
|
+ growth,
|
|
|
+ HS_start_block,
|
|
|
+ SE_start_block,
|
|
|
+ fc_channel,
|
|
|
+ group_1x1,
|
|
|
+ group_3x3,
|
|
|
+ group_trans,
|
|
|
+ bottleneck,
|
|
|
+ last_se_reduction,
|
|
|
+ in_channels=3,
|
|
|
+ class_num=1000, ):
|
|
|
+ super(CondenseNetV2, self).__init__()
|
|
|
+ self.stages = stages
|
|
|
+ self.growth = growth
|
|
|
+ self.in_channels = in_channels
|
|
|
+ self.class_num = class_num
|
|
|
+ self.last_se_reduction = last_se_reduction
|
|
|
+ assert len(self.stages) == len(self.growth)
|
|
|
+ self.progress = 0.0
|
|
|
+
|
|
|
+ self.init_stride = 2
|
|
|
+ self.pool_size = 7
|
|
|
+
|
|
|
+ self.features = nn.Sequential()
|
|
|
+ # Initial nChannels should be 3
|
|
|
+ self.num_features = 2 * self.growth[0]
|
|
|
+ # Dense-block 1 (224x224)
|
|
|
+ self.features.add_sublayer(
|
|
|
+ "init_conv",
|
|
|
+ nn.Conv2D(
|
|
|
+ in_channels,
|
|
|
+ self.num_features,
|
|
|
+ kernel_size=3,
|
|
|
+ stride=self.init_stride,
|
|
|
+ padding=1,
|
|
|
+ bias_attr=False, ), )
|
|
|
+ for i in range(len(self.stages)):
|
|
|
+ activation = "HS" if i >= HS_start_block else "ReLU"
|
|
|
+ use_se = True if i >= SE_start_block else False
|
|
|
+ # Dense-block i
|
|
|
+ self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
|
|
|
+ activation, use_se)
|
|
|
+
|
|
|
+ self.fc = nn.Linear(self.num_features, fc_channel)
|
|
|
+ self.fc_act = HS()
|
|
|
+
|
|
|
+ # Classifier layer
|
|
|
+ if class_num > 0:
|
|
|
+ self.classifier = nn.Linear(fc_channel, class_num)
|
|
|
+ self._initialize()
|
|
|
+
|
|
|
+ def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
|
|
|
+ activation, use_se):
|
|
|
+ # Check if ith is the last one
|
|
|
+ last = i == len(self.stages) - 1
|
|
|
+ block = _SFR_DenseBlock(
|
|
|
+ num_layers=self.stages[i],
|
|
|
+ in_channels=self.num_features,
|
|
|
+ growth_rate=self.growth[i],
|
|
|
+ group_1x1=group_1x1,
|
|
|
+ group_3x3=group_3x3,
|
|
|
+ group_trans=group_trans,
|
|
|
+ bottleneck=bottleneck,
|
|
|
+ activation=activation,
|
|
|
+ use_se=use_se, )
|
|
|
+ self.features.add_sublayer("denseblock_%d" % (i + 1), block)
|
|
|
+ self.num_features += self.stages[i] * self.growth[i]
|
|
|
+ if not last:
|
|
|
+ trans = _Transition()
|
|
|
+ self.features.add_sublayer("transition_%d" % (i + 1), trans)
|
|
|
+ else:
|
|
|
+ self.features.add_sublayer("norm_last",
|
|
|
+ nn.BatchNorm2D(self.num_features))
|
|
|
+ self.features.add_sublayer("relu_last", nn.ReLU())
|
|
|
+ self.features.add_sublayer("pool_last",
|
|
|
+ nn.AvgPool2D(self.pool_size))
|
|
|
+ # if useSE:
|
|
|
+ self.features.add_sublayer(
|
|
|
+ "se_last",
|
|
|
+ SELayer(
|
|
|
+ self.num_features, reduction=self.last_se_reduction))
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ features = self.features(x)
|
|
|
+ out = features.reshape((features.shape[0], features.shape[1] *
|
|
|
+ features.shape[2] * features.shape[3]))
|
|
|
+ out = self.fc(out)
|
|
|
+ out = self.fc_act(out)
|
|
|
+
|
|
|
+ if self.class_num > 0:
|
|
|
+ out = self.classifier(out)
|
|
|
+
|
|
|
+ return out
|
|
|
+
|
|
|
+ def _initialize(self):
|
|
|
+ # Initialize
|
|
|
+ for m in self.sublayers():
|
|
|
+ if isinstance(m, nn.Conv2D):
|
|
|
+ nn.initializer.KaimingNormal()(m.weight)
|
|
|
+ elif isinstance(m, nn.BatchNorm2D):
|
|
|
+ nn.initializer.Constant(value=1.0)(m.weight)
|
|
|
+ nn.initializer.Constant(value=0.0)(m.bias)
|
|
|
+
|
|
|
+
|
|
|
+def CondenseNetV2_A(**kwargs):
|
|
|
+ model = CondenseNetV2(
|
|
|
+ stages=[1, 1, 4, 6, 8],
|
|
|
+ growth=[8, 8, 16, 32, 64],
|
|
|
+ HS_start_block=2,
|
|
|
+ SE_start_block=3,
|
|
|
+ fc_channel=828,
|
|
|
+ group_1x1=8,
|
|
|
+ group_3x3=8,
|
|
|
+ group_trans=8,
|
|
|
+ bottleneck=4,
|
|
|
+ last_se_reduction=16,
|
|
|
+ **kwargs)
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+def CondenseNetV2_B(**kwargs):
|
|
|
+ model = CondenseNetV2(
|
|
|
+ stages=[2, 4, 6, 8, 6],
|
|
|
+ growth=[6, 12, 24, 48, 96],
|
|
|
+ HS_start_block=2,
|
|
|
+ SE_start_block=3,
|
|
|
+ fc_channel=1024,
|
|
|
+ group_1x1=6,
|
|
|
+ group_3x3=6,
|
|
|
+ group_trans=6,
|
|
|
+ bottleneck=4,
|
|
|
+ last_se_reduction=16,
|
|
|
+ **kwargs)
|
|
|
+ return model
|
|
|
+
|
|
|
+
|
|
|
+def CondenseNetV2_C(**kwargs):
|
|
|
+ model = CondenseNetV2(
|
|
|
+ stages=[4, 6, 8, 10, 8],
|
|
|
+ growth=[8, 16, 32, 64, 128],
|
|
|
+ HS_start_block=2,
|
|
|
+ SE_start_block=3,
|
|
|
+ fc_channel=1024,
|
|
|
+ group_1x1=8,
|
|
|
+ group_3x3=8,
|
|
|
+ group_trans=8,
|
|
|
+ bottleneck=4,
|
|
|
+ last_se_reduction=16,
|
|
|
+ **kwargs)
|
|
|
+ return model
|