|
@@ -0,0 +1,437 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import os
|
|
|
+import os.path as osp
|
|
|
+import math
|
|
|
+from abc import ABCMeta, abstractmethod
|
|
|
+from collections import Counter, defaultdict
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+import paddlers.utils.logging as logging
|
|
|
+
|
|
|
+
|
|
|
+class Cache(metaclass=ABCMeta):
|
|
|
+ @abstractmethod
|
|
|
+ def get_block(self, i_st, j_st, h, w):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class SlowCache(Cache):
|
|
|
+ def __init__(self):
|
|
|
+ super(SlowCache, self).__init__()
|
|
|
+ self.cache = defaultdict(Counter)
|
|
|
+
|
|
|
+ def push_pixel(self, i, j, l):
|
|
|
+ self.cache[(i, j)][l] += 1
|
|
|
+
|
|
|
+ def push_block(self, i_st, j_st, h, w, data):
|
|
|
+ for i in range(0, h):
|
|
|
+ for j in range(0, w):
|
|
|
+ self.push_pixel(i_st + i, j_st + j, data[i, j])
|
|
|
+
|
|
|
+ def pop_pixel(self, i, j):
|
|
|
+ self.cache.pop((i, j))
|
|
|
+
|
|
|
+ def pop_block(self, i_st, j_st, h, w):
|
|
|
+ for i in range(0, h):
|
|
|
+ for j in range(0, w):
|
|
|
+ self.pop_pixel(i_st + i, j_st + j)
|
|
|
+
|
|
|
+ def get_pixel(self, i, j):
|
|
|
+ winners = self.cache[(i, j)].most_common(1)
|
|
|
+ winner = winners[0]
|
|
|
+ return winner[0]
|
|
|
+
|
|
|
+ def get_block(self, i_st, j_st, h, w):
|
|
|
+ block = []
|
|
|
+ for i in range(i_st, i_st + h):
|
|
|
+ row = []
|
|
|
+ for j in range(j_st, j_st + w):
|
|
|
+ row.append(self.get_pixel(i, j))
|
|
|
+ block.append(row)
|
|
|
+ return np.asarray(block)
|
|
|
+
|
|
|
+
|
|
|
+class ProbCache(Cache):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'):
|
|
|
+ super(ProbCache, self).__init__()
|
|
|
+ self.cache = None
|
|
|
+ self.h = h
|
|
|
+ self.w = w
|
|
|
+ self.ch = ch
|
|
|
+ self.cw = cw
|
|
|
+ self.sh = sh
|
|
|
+ self.sw = sw
|
|
|
+ if not issubclass(dtype, np.floating):
|
|
|
+ raise TypeError("`dtype` must be one of the floating types.")
|
|
|
+ self.dtype = dtype
|
|
|
+ order = order.lower()
|
|
|
+ if order not in ('c', 'f'):
|
|
|
+ raise ValueError("`order` other than 'c' and 'f' is not supported.")
|
|
|
+ self.order = order
|
|
|
+
|
|
|
+ def _alloc_memory(self, nc):
|
|
|
+ if self.order == 'c':
|
|
|
+ # Colomn-first order (C-style)
|
|
|
+ #
|
|
|
+ # <-- cw -->
|
|
|
+ # |--------|---------------------|^ ^
|
|
|
+ # | || | sh
|
|
|
+ # |--------|---------------------|| ch v
|
|
|
+ # | ||
|
|
|
+ # |--------|---------------------|v
|
|
|
+ # <------------ w --------------->
|
|
|
+ self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype)
|
|
|
+ elif self.order == 'f':
|
|
|
+ # Row-first order (Fortran-style)
|
|
|
+ #
|
|
|
+ # <-- sw -->
|
|
|
+ # <---- cw ---->
|
|
|
+ # |--------|---|^ ^
|
|
|
+ # | | || |
|
|
|
+ # | | || ch
|
|
|
+ # | | || |
|
|
|
+ # |--------|---|| h v
|
|
|
+ # | | ||
|
|
|
+ # | | ||
|
|
|
+ # | | ||
|
|
|
+ # |--------|---|v
|
|
|
+ self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype)
|
|
|
+
|
|
|
+ def update_block(self, i_st, j_st, h, w, prob_map):
|
|
|
+ if self.cache is None:
|
|
|
+ nc = prob_map.shape[2]
|
|
|
+ # Lazy allocation of memory
|
|
|
+ self._alloc_memory(nc)
|
|
|
+ self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map
|
|
|
+
|
|
|
+ def roll_cache(self, shift):
|
|
|
+ if self.order == 'c':
|
|
|
+ self.cache[:-shift] = self.cache[shift:]
|
|
|
+ self.cache[-shift:, :] = 0
|
|
|
+ elif self.order == 'f':
|
|
|
+ self.cache[:, :-shift] = self.cache[:, shift:]
|
|
|
+ self.cache[:, -shift:] = 0
|
|
|
+
|
|
|
+ def get_block(self, i_st, j_st, h, w):
|
|
|
+ return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2)
|
|
|
+
|
|
|
+
|
|
|
+class OverlapProcessor(metaclass=ABCMeta):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw):
|
|
|
+ super(OverlapProcessor, self).__init__()
|
|
|
+ self.h = h
|
|
|
+ self.w = w
|
|
|
+ self.ch = ch
|
|
|
+ self.cw = cw
|
|
|
+ self.sh = sh
|
|
|
+ self.sw = sw
|
|
|
+
|
|
|
+ @abstractmethod
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class KeepFirstProcessor(OverlapProcessor):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw, ds, inval=255):
|
|
|
+ super(KeepFirstProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
+ self.ds = ds
|
|
|
+ self.inval = inval
|
|
|
+
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ rd_block = self.ds.ReadAsArray(xoff, yoff, self.cw, self.ch)
|
|
|
+ mask = rd_block != self.inval
|
|
|
+ pred = np.where(mask, rd_block, pred)
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+class KeepLastProcessor(OverlapProcessor):
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+class AccumProcessor(OverlapProcessor):
|
|
|
+ def __init__(self,
|
|
|
+ h,
|
|
|
+ w,
|
|
|
+ ch,
|
|
|
+ cw,
|
|
|
+ sh,
|
|
|
+ sw,
|
|
|
+ dtype=np.float16,
|
|
|
+ assign_weight=True):
|
|
|
+ super(AccumProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
+ self.cache = ProbCache(h, w, ch, cw, sh, sw, dtype=dtype, order='c')
|
|
|
+ self.prev_yoff = None
|
|
|
+ self.assign_weight = assign_weight
|
|
|
+
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ if self.prev_yoff is not None and yoff != self.prev_yoff:
|
|
|
+ if yoff < self.prev_yoff:
|
|
|
+ raise RuntimeError
|
|
|
+ self.cache.roll_cache(yoff - self.prev_yoff)
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ prob = out['score_map']
|
|
|
+ prob = prob[:self.ch, :self.cw]
|
|
|
+ if self.assign_weight:
|
|
|
+ prob = assign_border_weights(prob, border_ratio=0.25, inplace=True)
|
|
|
+ self.cache.update_block(0, xoff, self.ch, self.cw, prob)
|
|
|
+ pred = self.cache.get_block(0, xoff, self.ch, self.cw)
|
|
|
+ self.prev_yoff = yoff
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+def assign_border_weights(array, weight=0.5, border_ratio=0.25, inplace=True):
|
|
|
+ if not inplace:
|
|
|
+ array = array.copy()
|
|
|
+ h, w = array.shape[:2]
|
|
|
+ hm, wm = int(h * border_ratio), int(w * border_ratio)
|
|
|
+ array[:hm] *= weight
|
|
|
+ array[-hm:] *= weight
|
|
|
+ array[:, :wm] *= weight
|
|
|
+ array[:, -wm:] *= weight
|
|
|
+ return array
|
|
|
+
|
|
|
+
|
|
|
+def read_block(ds,
|
|
|
+ xoff,
|
|
|
+ yoff,
|
|
|
+ xsize,
|
|
|
+ ysize,
|
|
|
+ tar_xsize=None,
|
|
|
+ tar_ysize=None,
|
|
|
+ pad_val=0):
|
|
|
+ if tar_xsize is None:
|
|
|
+ tar_xsize = xsize
|
|
|
+ if tar_ysize is None:
|
|
|
+ tar_ysize = ysize
|
|
|
+ # Read data from dataset
|
|
|
+ block = ds.ReadAsArray(xoff, yoff, xsize, ysize)
|
|
|
+ c, real_ysize, real_xsize = block.shape
|
|
|
+ assert real_ysize == ysize and real_xsize == xsize
|
|
|
+ # [c, h, w] -> [h, w, c]
|
|
|
+ block = block.transpose((1, 2, 0))
|
|
|
+ if (real_ysize, real_xsize) != (tar_ysize, tar_xsize):
|
|
|
+ if real_ysize >= tar_ysize or real_xsize >= tar_xsize:
|
|
|
+ raise ValueError
|
|
|
+ padded_block = np.full(
|
|
|
+ (tar_ysize, tar_xsize, c), fill_value=pad_val, dtype=block.dtype)
|
|
|
+ # Fill
|
|
|
+ padded_block[:real_ysize, :real_xsize] = block
|
|
|
+ return padded_block
|
|
|
+ else:
|
|
|
+ return block
|
|
|
+
|
|
|
+
|
|
|
+def slider_predict(predict_func,
|
|
|
+ img_file,
|
|
|
+ save_dir,
|
|
|
+ block_size,
|
|
|
+ overlap,
|
|
|
+ transforms,
|
|
|
+ invalid_value,
|
|
|
+ merge_strategy,
|
|
|
+ batch_size,
|
|
|
+ show_progress=False):
|
|
|
+ """
|
|
|
+ Do inference using sliding windows.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ predict_func (callable): A callable object that makes the prediction.
|
|
|
+ img_file (str|tuple[str]): Image path(s).
|
|
|
+ save_dir (str): Directory that contains saved geotiff file.
|
|
|
+ block_size (list[int] | tuple[int] | int):
|
|
|
+ Size of block. If `block_size` is list or tuple, it should be in
|
|
|
+ (W, H) format.
|
|
|
+ overlap (list[int] | tuple[int] | int):
|
|
|
+ Overlap between two blocks. If `overlap` is list or tuple, it should
|
|
|
+ be in (W, H) format.
|
|
|
+ transforms (paddlers.transforms.Compose|None): Transforms for inputs. If
|
|
|
+ None, the transforms for evaluation process will be used.
|
|
|
+ invalid_value (int): Value that marks invalid pixels in output image.
|
|
|
+ Defaults to 255.
|
|
|
+ merge_strategy (str): Strategy to merge overlapping blocks. Choices are
|
|
|
+ {'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
|
|
|
+ means keeping the values of the first and the last block in
|
|
|
+ traversal order, respectively. 'accum' means determining the class
|
|
|
+ of an overlapping pixel according to accumulated probabilities.
|
|
|
+ batch_size (int): Batch size used in inference.
|
|
|
+ show_progress (bool, optional): Whether to show prediction progress with a
|
|
|
+ progress bar. Defaults to True.
|
|
|
+ """
|
|
|
+
|
|
|
+ try:
|
|
|
+ from osgeo import gdal
|
|
|
+ except:
|
|
|
+ import gdal
|
|
|
+
|
|
|
+ if isinstance(block_size, int):
|
|
|
+ block_size = (block_size, block_size)
|
|
|
+ elif isinstance(block_size, (tuple, list)) and len(block_size) == 2:
|
|
|
+ block_size = tuple(block_size)
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ "`block_size` must be a tuple/list of length 2 or an integer.")
|
|
|
+ if isinstance(overlap, int):
|
|
|
+ overlap = (overlap, overlap)
|
|
|
+ elif isinstance(overlap, (tuple, list)) and len(overlap) == 2:
|
|
|
+ overlap = tuple(overlap)
|
|
|
+ else:
|
|
|
+ raise ValueError(
|
|
|
+ "`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
+
|
|
|
+ step = np.array(
|
|
|
+ block_size, dtype=np.int32) - np.array(
|
|
|
+ overlap, dtype=np.int32)
|
|
|
+ if step[0] == 0 or step[1] == 0:
|
|
|
+ raise ValueError("`block_size` and `overlap` should not be equal.")
|
|
|
+
|
|
|
+ if isinstance(img_file, tuple):
|
|
|
+ if len(img_file) != 2:
|
|
|
+ raise ValueError("Tuple `img_file` must have the length of two.")
|
|
|
+ # Assume that two input images have the same size
|
|
|
+ src_data = gdal.Open(img_file[0])
|
|
|
+ src2_data = gdal.Open(img_file[1])
|
|
|
+ # Output name is the same as the name of the first image
|
|
|
+ file_name = osp.basename(osp.normpath(img_file[0]))
|
|
|
+ else:
|
|
|
+ src_data = gdal.Open(img_file)
|
|
|
+ file_name = osp.basename(osp.normpath(img_file))
|
|
|
+
|
|
|
+ # Get size of original raster
|
|
|
+ width = src_data.RasterXSize
|
|
|
+ height = src_data.RasterYSize
|
|
|
+ bands = src_data.RasterCount
|
|
|
+
|
|
|
+ # XXX: GDAL read behavior conforms to paddlers.transforms.decode_image(read_raw=True)
|
|
|
+ # except for SAR images.
|
|
|
+ if bands == 1:
|
|
|
+ logging.warning(
|
|
|
+ f"Detected `bands=1`. Please note that currently `slider_predict()` does not properly handle SAR images."
|
|
|
+ )
|
|
|
+
|
|
|
+ if block_size[0] > width or block_size[1] > height:
|
|
|
+ raise ValueError("`block_size` should not be larger than image size.")
|
|
|
+
|
|
|
+ driver = gdal.GetDriverByName("GTiff")
|
|
|
+ if not osp.exists(save_dir):
|
|
|
+ os.makedirs(save_dir)
|
|
|
+ # Replace extension name with '.tif'
|
|
|
+ file_name = osp.splitext(file_name)[0] + ".tif"
|
|
|
+ save_file = osp.join(save_dir, file_name)
|
|
|
+ dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte)
|
|
|
+
|
|
|
+ # Set meta-information
|
|
|
+ dst_data.SetGeoTransform(src_data.GetGeoTransform())
|
|
|
+ dst_data.SetProjection(src_data.GetProjection())
|
|
|
+
|
|
|
+ # Initialize raster with `invalid_value`
|
|
|
+ band = dst_data.GetRasterBand(1)
|
|
|
+ band.WriteArray(
|
|
|
+ np.full(
|
|
|
+ (height, width), fill_value=invalid_value, dtype="uint8"))
|
|
|
+
|
|
|
+ if overlap == (0, 0) or block_size == (width, height):
|
|
|
+ # When there is no overlap or the whole image is used as input,
|
|
|
+ # use 'keep_last' strategy as it introduces least overheads
|
|
|
+ merge_strategy = 'keep_last'
|
|
|
+
|
|
|
+ if merge_strategy == 'keep_first':
|
|
|
+ overlap_processor = KeepFirstProcessor(
|
|
|
+ height,
|
|
|
+ width,
|
|
|
+ *block_size[::-1],
|
|
|
+ *step[::-1],
|
|
|
+ band,
|
|
|
+ inval=invalid_value)
|
|
|
+ elif merge_strategy == 'keep_last':
|
|
|
+ overlap_processor = KeepLastProcessor(height, width, *block_size[::-1],
|
|
|
+ *step[::-1])
|
|
|
+ elif merge_strategy == 'accum':
|
|
|
+ overlap_processor = AccumProcessor(height, width, *block_size[::-1],
|
|
|
+ *step[::-1])
|
|
|
+ else:
|
|
|
+ raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
+ format(merge_strategy))
|
|
|
+
|
|
|
+ xsize, ysize = block_size
|
|
|
+ num_blocks = math.ceil(height / step[1]) * math.ceil(width / step[0])
|
|
|
+ cnt = 0
|
|
|
+ if show_progress:
|
|
|
+ pb = tqdm(total=num_blocks)
|
|
|
+ batch_data = []
|
|
|
+ batch_offsets = []
|
|
|
+ for yoff in range(0, height, step[1]):
|
|
|
+ for xoff in range(0, width, step[0]):
|
|
|
+ if xoff + xsize > width:
|
|
|
+ xoff = width - xsize
|
|
|
+ is_end_of_row = True
|
|
|
+ else:
|
|
|
+ is_end_of_row = False
|
|
|
+ if yoff + ysize > height:
|
|
|
+ yoff = height - ysize
|
|
|
+ is_end_of_col = True
|
|
|
+ else:
|
|
|
+ is_end_of_col = False
|
|
|
+
|
|
|
+ # Read
|
|
|
+ im = read_block(src_data, xoff, yoff, xsize, ysize)
|
|
|
+
|
|
|
+ if isinstance(img_file, tuple):
|
|
|
+ im2 = read_block(src2_data, xoff, yoff, xsize, ysize)
|
|
|
+ batch_data.append((im, im2))
|
|
|
+ else:
|
|
|
+ batch_data.append(im)
|
|
|
+
|
|
|
+ batch_offsets.append((xoff, yoff))
|
|
|
+
|
|
|
+ len_batch = len(batch_data)
|
|
|
+
|
|
|
+ if is_end_of_row and is_end_of_col and len_batch < batch_size:
|
|
|
+ # Pad `batch_data` by repeating the last element
|
|
|
+ batch_data = batch_data + [batch_data[-1]] * (batch_size -
|
|
|
+ len_batch)
|
|
|
+ # While keeping `len(batch_offsets)` the number of valid elements in the batch
|
|
|
+
|
|
|
+ if len(batch_data) == batch_size:
|
|
|
+ # Predict
|
|
|
+ batch_out = predict_func(batch_data, transforms=transforms)
|
|
|
+
|
|
|
+ for out, (xoff_, yoff_) in zip(batch_out, batch_offsets):
|
|
|
+ # Get processed result
|
|
|
+ pred = overlap_processor.process_pred(out, xoff_, yoff_)
|
|
|
+ # Write to file
|
|
|
+ band.WriteArray(pred, xoff_, yoff_)
|
|
|
+
|
|
|
+ dst_data.FlushCache()
|
|
|
+ batch_data.clear()
|
|
|
+ batch_offsets.clear()
|
|
|
+
|
|
|
+ cnt += 1
|
|
|
+
|
|
|
+ if show_progress:
|
|
|
+ pb.update(1)
|
|
|
+ pb.set_description("{} out of {} blocks processed.".format(
|
|
|
+ cnt, num_blocks))
|
|
|
+
|
|
|
+ dst_data = None
|
|
|
+ logging.info("GeoTiff file saved in {}.".format(save_file))
|