|
|
@@ -0,0 +1,374 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+from __future__ import absolute_import
|
|
|
+import copy
|
|
|
+import os
|
|
|
+import os.path as osp
|
|
|
+import random
|
|
|
+import numpy as np
|
|
|
+from collections import OrderedDict
|
|
|
+from paddle.io import Dataset
|
|
|
+from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic
|
|
|
+from paddlers.transforms import ImgDecoder, MixupImage
|
|
|
+from paddlers.tools import YOLOAnchorCluster
|
|
|
+
|
|
|
+
|
|
|
+class COCODetection(Dataset):
|
|
|
+ """读取COCO格式的检测数据集,并对样本进行相应的处理。
|
|
|
+
|
|
|
+ Args:
|
|
|
+ data_dir (str): 数据集所在的目录路径。
|
|
|
+ image_dir (str): 描述数据集图片文件路径。
|
|
|
+ anno_path (str): COCO标注文件路径。
|
|
|
+ label_list (str): 描述数据集包含的类别信息文件路径。
|
|
|
+ transforms (paddlers.det.transforms): 数据集中每个样本的预处理/增强算子。
|
|
|
+ num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
|
|
|
+ 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
|
|
|
+ 一半。
|
|
|
+ shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
|
|
|
+ allow_empty (bool): 是否加载负样本。默认为False。
|
|
|
+ empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self,
|
|
|
+ data_dir,
|
|
|
+ image_dir,
|
|
|
+ anno_path,
|
|
|
+ label_list,
|
|
|
+ transforms=None,
|
|
|
+ num_workers='auto',
|
|
|
+ shuffle=False,
|
|
|
+ allow_empty=False,
|
|
|
+ empty_ratio=1.):
|
|
|
+ # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
|
|
|
+ # or matplotlib.backends is imported for the first time
|
|
|
+ # pycocotools import matplotlib
|
|
|
+ import matplotlib
|
|
|
+ matplotlib.use('Agg')
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+ super(COCODetection, self).__init__()
|
|
|
+ self.data_dir = data_dir
|
|
|
+ self.data_fields = None
|
|
|
+ self.transforms = copy.deepcopy(transforms)
|
|
|
+ self.num_max_boxes = 50
|
|
|
+
|
|
|
+ self.use_mix = False
|
|
|
+ if self.transforms is not None:
|
|
|
+ for op in self.transforms.transforms:
|
|
|
+ if isinstance(op, MixupImage):
|
|
|
+ self.mixup_op = copy.deepcopy(op)
|
|
|
+ self.use_mix = True
|
|
|
+ self.num_max_boxes *= 2
|
|
|
+ break
|
|
|
+
|
|
|
+ self.batch_transforms = None
|
|
|
+ self.num_workers = get_num_workers(num_workers)
|
|
|
+ self.shuffle = shuffle
|
|
|
+ self.allow_empty = allow_empty
|
|
|
+ self.empty_ratio = empty_ratio
|
|
|
+ self.file_list = list()
|
|
|
+ neg_file_list = list()
|
|
|
+ self.labels = list()
|
|
|
+
|
|
|
+ annotations = dict()
|
|
|
+ annotations['images'] = list()
|
|
|
+ annotations['categories'] = list()
|
|
|
+ annotations['annotations'] = list()
|
|
|
+
|
|
|
+ cname2cid = OrderedDict()
|
|
|
+ label_id = 0
|
|
|
+ with open(label_list, 'r', encoding=get_encoding(label_list)) as f:
|
|
|
+ for line in f.readlines():
|
|
|
+ cname2cid[line.strip()] = label_id
|
|
|
+ label_id += 1
|
|
|
+ self.labels.append(line.strip())
|
|
|
+
|
|
|
+ for k, v in cname2cid.items():
|
|
|
+ annotations['categories'].append({
|
|
|
+ 'supercategory': 'component',
|
|
|
+ 'id': v + 1,
|
|
|
+ 'name': k
|
|
|
+ })
|
|
|
+
|
|
|
+ anno_path = path_normalization(os.path.join(self.data_dir, anno_path))
|
|
|
+ image_dir = path_normalization(os.path.join(self.data_dir, image_dir))
|
|
|
+
|
|
|
+ assert anno_path.endswith('.json'), \
|
|
|
+ 'invalid coco annotation file: ' + anno_path
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+ coco = COCO(anno_path)
|
|
|
+ img_ids = coco.getImgIds()
|
|
|
+ img_ids.sort()
|
|
|
+ cat_ids = coco.getCatIds()
|
|
|
+ ct = 0
|
|
|
+
|
|
|
+ catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
|
|
|
+ cname2cid = dict({
|
|
|
+ coco.loadCats(catid)[0]['name']: clsid
|
|
|
+ for catid, clsid in catid2clsid.items()
|
|
|
+ })
|
|
|
+
|
|
|
+ for img_id in img_ids:
|
|
|
+ img_anno = coco.loadImgs([img_id])[0]
|
|
|
+ im_fname = img_anno['file_name']
|
|
|
+ im_w = float(img_anno['width'])
|
|
|
+ im_h = float(img_anno['height'])
|
|
|
+
|
|
|
+ im_path = os.path.join(image_dir,
|
|
|
+ im_fname) if image_dir else im_fname
|
|
|
+ if not os.path.exists(im_path):
|
|
|
+ logging.warning('Illegal image file: {}, and it will be '
|
|
|
+ 'ignored'.format(im_path))
|
|
|
+ continue
|
|
|
+
|
|
|
+ if im_w < 0 or im_h < 0:
|
|
|
+ logging.warning(
|
|
|
+ 'Illegal width: {} or height: {} in annotation, '
|
|
|
+ 'and im_id: {} will be ignored'.format(im_w, im_h, img_id))
|
|
|
+ continue
|
|
|
+
|
|
|
+ im_info = {
|
|
|
+ 'image': im_path,
|
|
|
+ 'im_id': np.array([img_id]),
|
|
|
+ 'image_shape': np.array(
|
|
|
+ [im_h, im_w], dtype=np.int32)
|
|
|
+ }
|
|
|
+
|
|
|
+ ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
|
|
|
+ instances = coco.loadAnns(ins_anno_ids)
|
|
|
+
|
|
|
+ is_crowds = []
|
|
|
+ gt_classes = []
|
|
|
+ gt_bboxs = []
|
|
|
+ gt_scores = []
|
|
|
+ difficults = []
|
|
|
+
|
|
|
+ for inst in instances:
|
|
|
+ # check gt bbox
|
|
|
+ if inst.get('ignore', False):
|
|
|
+ continue
|
|
|
+ if 'bbox' not in inst.keys():
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ if not any(np.array(inst['bbox'])):
|
|
|
+ continue
|
|
|
+
|
|
|
+ # read box
|
|
|
+ x1, y1, box_w, box_h = inst['bbox']
|
|
|
+ x2 = x1 + box_w
|
|
|
+ y2 = y1 + box_h
|
|
|
+ eps = 1e-5
|
|
|
+ if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
|
|
|
+ inst['clean_bbox'] = [
|
|
|
+ round(float(x), 3) for x in [x1, y1, x2, y2]
|
|
|
+ ]
|
|
|
+ else:
|
|
|
+ logging.warning(
|
|
|
+ 'Found an invalid bbox in annotations: im_id: {}, '
|
|
|
+ 'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
|
|
|
+ img_id, float(inst['area']), x1, y1, x2, y2))
|
|
|
+
|
|
|
+ is_crowds.append([inst['iscrowd']])
|
|
|
+ gt_classes.append([inst['category_id']])
|
|
|
+ gt_bboxs.append(inst['clean_bbox'])
|
|
|
+ gt_scores.append([1.])
|
|
|
+ difficults.append([0])
|
|
|
+
|
|
|
+ annotations['annotations'].append({
|
|
|
+ 'iscrowd': inst['iscrowd'],
|
|
|
+ 'image_id': int(inst['image_id']),
|
|
|
+ 'bbox': inst['clean_bbox'],
|
|
|
+ 'area': inst['area'],
|
|
|
+ 'category_id': inst['category_id'],
|
|
|
+ 'id': inst['id'],
|
|
|
+ 'difficult': 0
|
|
|
+ })
|
|
|
+
|
|
|
+ label_info = {
|
|
|
+ 'is_crowd': np.array(is_crowds),
|
|
|
+ 'gt_class': np.array(gt_classes),
|
|
|
+ 'gt_bbox': np.array(gt_bboxs).astype(np.float32),
|
|
|
+ 'gt_score': np.array(gt_scores).astype(np.float32),
|
|
|
+ 'difficult': np.array(difficults),
|
|
|
+ }
|
|
|
+
|
|
|
+ if label_info['gt_bbox'].size > 0:
|
|
|
+ self.file_list.append({ ** im_info, ** label_info})
|
|
|
+ annotations['images'].append({
|
|
|
+ 'height': im_h,
|
|
|
+ 'width': im_w,
|
|
|
+ 'id': int(im_info['im_id']),
|
|
|
+ 'file_name': osp.split(im_info['image'])[1]
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ neg_file_list.append({ ** im_info, ** label_info})
|
|
|
+ ct += 1
|
|
|
+
|
|
|
+ if self.use_mix:
|
|
|
+ self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances))
|
|
|
+ else:
|
|
|
+ self.num_max_boxes = max(self.num_max_boxes, len(instances))
|
|
|
+
|
|
|
+ if not ct:
|
|
|
+ logging.error(
|
|
|
+ "No coco record found in %s' % (file_list)", exit=True)
|
|
|
+ self.pos_num = len(self.file_list)
|
|
|
+ if self.allow_empty and neg_file_list:
|
|
|
+ self.file_list += self._sample_empty(neg_file_list)
|
|
|
+ logging.info(
|
|
|
+ "{} samples in file {}, including {} positive samples and {} negative samples.".
|
|
|
+ format(
|
|
|
+ len(self.file_list), anno_path, self.pos_num,
|
|
|
+ len(self.file_list) - self.pos_num))
|
|
|
+ self.num_samples = len(self.file_list)
|
|
|
+ self.coco_gt = COCO()
|
|
|
+ self.coco_gt.dataset = annotations
|
|
|
+ self.coco_gt.createIndex()
|
|
|
+
|
|
|
+ self._epoch = 0
|
|
|
+
|
|
|
+ def __getitem__(self, idx):
|
|
|
+ sample = copy.deepcopy(self.file_list[idx])
|
|
|
+ if self.data_fields is not None:
|
|
|
+ sample = {k: sample[k] for k in self.data_fields}
|
|
|
+ if self.use_mix and (self.mixup_op.mixup_epoch == -1 or
|
|
|
+ self._epoch < self.mixup_op.mixup_epoch):
|
|
|
+ if self.num_samples > 1:
|
|
|
+ mix_idx = random.randint(1, self.num_samples - 1)
|
|
|
+ mix_pos = (mix_idx + idx) % self.num_samples
|
|
|
+ else:
|
|
|
+ mix_pos = 0
|
|
|
+ sample_mix = copy.deepcopy(self.file_list[mix_pos])
|
|
|
+ if self.data_fields is not None:
|
|
|
+ sample_mix = {k: sample_mix[k] for k in self.data_fields}
|
|
|
+ sample = self.mixup_op(sample=[
|
|
|
+ ImgDecoder(to_rgb=False)(sample),
|
|
|
+ ImgDecoder(to_rgb=False)(sample_mix)
|
|
|
+ ])
|
|
|
+ sample = self.transforms(sample)
|
|
|
+ return sample
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return self.num_samples
|
|
|
+
|
|
|
+ def set_epoch(self, epoch_id):
|
|
|
+ self._epoch = epoch_id
|
|
|
+
|
|
|
+ def cluster_yolo_anchor(self,
|
|
|
+ num_anchors,
|
|
|
+ image_size,
|
|
|
+ cache=True,
|
|
|
+ cache_path=None,
|
|
|
+ iters=300,
|
|
|
+ gen_iters=1000,
|
|
|
+ thresh=.25):
|
|
|
+ """
|
|
|
+ Cluster YOLO anchors.
|
|
|
+
|
|
|
+ Reference:
|
|
|
+ https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
|
|
|
+
|
|
|
+ Args:
|
|
|
+ num_anchors (int): number of clusters
|
|
|
+ image_size (list or int): [h, w], being an int means image height and image width are the same.
|
|
|
+ cache (bool): whether using cache
|
|
|
+ cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset.
|
|
|
+ iters (int, optional): iters of kmeans algorithm
|
|
|
+ gen_iters (int, optional): iters of genetic algorithm
|
|
|
+ threshold (float, optional): anchor scale threshold
|
|
|
+ verbose (bool, optional): whether print results
|
|
|
+ """
|
|
|
+ if cache_path is None:
|
|
|
+ cache_path = self.data_dir
|
|
|
+ cluster = YOLOAnchorCluster(
|
|
|
+ num_anchors=num_anchors,
|
|
|
+ dataset=self,
|
|
|
+ image_size=image_size,
|
|
|
+ cache=cache,
|
|
|
+ cache_path=cache_path,
|
|
|
+ iters=iters,
|
|
|
+ gen_iters=gen_iters,
|
|
|
+ thresh=thresh)
|
|
|
+ anchors = cluster()
|
|
|
+ return anchors
|
|
|
+
|
|
|
+ def add_negative_samples(self, image_dir, empty_ratio=1):
|
|
|
+ """将背景图片加入训练
|
|
|
+
|
|
|
+ Args:
|
|
|
+ image_dir (str):背景图片所在的文件夹目录。
|
|
|
+ empty_ratio (float or None): 用于指定负样本占总样本数的比例。如果为None,保留数据集初始化是设置的`empty_ratio`值,
|
|
|
+ 否则更新原有`empty_ratio`值。如果小于0或大于等于1,则保留全部的负样本。默认为1。
|
|
|
+
|
|
|
+ """
|
|
|
+ import cv2
|
|
|
+ if not osp.isdir(image_dir):
|
|
|
+ raise Exception("{} is not a valid image directory.".format(
|
|
|
+ image_dir))
|
|
|
+ if empty_ratio is not None:
|
|
|
+ self.empty_ratio = empty_ratio
|
|
|
+ image_list = os.listdir(image_dir)
|
|
|
+ max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds()))
|
|
|
+ neg_file_list = list()
|
|
|
+ for image in image_list:
|
|
|
+ if not is_pic(image):
|
|
|
+ continue
|
|
|
+ gt_bbox = np.zeros((0, 4), dtype=np.float32)
|
|
|
+ gt_class = np.zeros((0, 1), dtype=np.int32)
|
|
|
+ gt_score = np.zeros((0, 1), dtype=np.float32)
|
|
|
+ is_crowd = np.zeros((0, 1), dtype=np.int32)
|
|
|
+ difficult = np.zeros((0, 1), dtype=np.int32)
|
|
|
+
|
|
|
+ max_img_id += 1
|
|
|
+ im_fname = osp.join(image_dir, image)
|
|
|
+ img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
|
|
|
+ im_h, im_w, im_c = img_data.shape
|
|
|
+
|
|
|
+ im_info = {
|
|
|
+ 'im_id': np.asarray([max_img_id]),
|
|
|
+ 'image_shape': np.array(
|
|
|
+ [im_h, im_w], dtype=np.int32)
|
|
|
+ }
|
|
|
+ label_info = {
|
|
|
+ 'is_crowd': is_crowd,
|
|
|
+ 'gt_class': gt_class,
|
|
|
+ 'gt_bbox': gt_bbox,
|
|
|
+ 'gt_score': gt_score,
|
|
|
+ 'difficult': difficult
|
|
|
+ }
|
|
|
+ if 'gt_poly' in self.file_list[0]:
|
|
|
+ label_info['gt_poly'] = []
|
|
|
+
|
|
|
+ neg_file_list.append({'image': im_fname, ** im_info, ** label_info})
|
|
|
+ if neg_file_list:
|
|
|
+ self.allow_empty = True
|
|
|
+ self.file_list += self._sample_empty(neg_file_list)
|
|
|
+ logging.info(
|
|
|
+ "{} negative samples added. Dataset contains {} positive samples and {} negative samples.".
|
|
|
+ format(
|
|
|
+ len(self.file_list) - self.num_samples, self.pos_num,
|
|
|
+ len(self.file_list) - self.pos_num))
|
|
|
+ self.num_samples = len(self.file_list)
|
|
|
+
|
|
|
+ def _sample_empty(self, neg_file_list):
|
|
|
+ if 0. <= self.empty_ratio < 1.:
|
|
|
+ import random
|
|
|
+ total_num = len(self.file_list)
|
|
|
+ neg_num = total_num - self.pos_num
|
|
|
+ sample_num = min((total_num * self.empty_ratio - neg_num) //
|
|
|
+ (1 - self.empty_ratio), len(neg_file_list))
|
|
|
+ return random.sample(neg_file_list, sample_num)
|
|
|
+ else:
|
|
|
+ return neg_file_list
|