Просмотр исходного кода

[Feature] Init add COCO datasets (#56)

Yizhou Chen 3 лет назад
Родитель
Сommit
9084322f79
3 измененных файлов с 375 добавлено и 0 удалено
  1. BIN
      docs/images/wechat.jpg
  2. 1 0
      paddlers/datasets/__init__.py
  3. 374 0
      paddlers/datasets/coco.py

BIN
docs/images/wechat.jpg


+ 1 - 0
paddlers/datasets/__init__.py

@@ -13,6 +13,7 @@
 # limitations under the License.
 
 from .voc import VOCDetection
+from .coco import COCODetection
 from .seg_dataset import SegDataset
 from .cd_dataset import CDDataset
 from .clas_dataset import ClasDataset

+ 374 - 0
paddlers/datasets/coco.py

@@ -0,0 +1,374 @@
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+import copy
+import os
+import os.path as osp
+import random
+import numpy as np
+from collections import OrderedDict
+from paddle.io import Dataset
+from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic
+from paddlers.transforms import ImgDecoder, MixupImage
+from paddlers.tools import YOLOAnchorCluster
+
+
+class COCODetection(Dataset):
+    """读取COCO格式的检测数据集,并对样本进行相应的处理。
+
+    Args:
+        data_dir (str): 数据集所在的目录路径。
+        image_dir (str): 描述数据集图片文件路径。
+        anno_path (str): COCO标注文件路径。
+        label_list (str): 描述数据集包含的类别信息文件路径。
+        transforms (paddlers.det.transforms): 数据集中每个样本的预处理/增强算子。
+        num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
+            系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
+            一半。
+        shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
+        allow_empty (bool): 是否加载负样本。默认为False。
+        empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。
+    """
+
+    def __init__(self,
+                 data_dir,
+                 image_dir,
+                 anno_path,
+                 label_list,
+                 transforms=None,
+                 num_workers='auto',
+                 shuffle=False,
+                 allow_empty=False,
+                 empty_ratio=1.):
+        # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
+        # or matplotlib.backends is imported for the first time
+        # pycocotools import matplotlib
+        import matplotlib
+        matplotlib.use('Agg')
+        from pycocotools.coco import COCO
+        super(COCODetection, self).__init__()
+        self.data_dir = data_dir
+        self.data_fields = None
+        self.transforms = copy.deepcopy(transforms)
+        self.num_max_boxes = 50
+
+        self.use_mix = False
+        if self.transforms is not None:
+            for op in self.transforms.transforms:
+                if isinstance(op, MixupImage):
+                    self.mixup_op = copy.deepcopy(op)
+                    self.use_mix = True
+                    self.num_max_boxes *= 2
+                    break
+
+        self.batch_transforms = None
+        self.num_workers = get_num_workers(num_workers)
+        self.shuffle = shuffle
+        self.allow_empty = allow_empty
+        self.empty_ratio = empty_ratio
+        self.file_list = list()
+        neg_file_list = list()
+        self.labels = list()
+
+        annotations = dict()
+        annotations['images'] = list()
+        annotations['categories'] = list()
+        annotations['annotations'] = list()
+
+        cname2cid = OrderedDict()
+        label_id = 0
+        with open(label_list, 'r', encoding=get_encoding(label_list)) as f:
+            for line in f.readlines():
+                cname2cid[line.strip()] = label_id
+                label_id += 1
+                self.labels.append(line.strip())
+
+        for k, v in cname2cid.items():
+            annotations['categories'].append({
+                'supercategory': 'component',
+                'id': v + 1,
+                'name': k
+            })
+
+        anno_path = path_normalization(os.path.join(self.data_dir, anno_path))
+        image_dir = path_normalization(os.path.join(self.data_dir, image_dir))
+
+        assert anno_path.endswith('.json'), \
+            'invalid coco annotation file: ' + anno_path
+        from pycocotools.coco import COCO
+        coco = COCO(anno_path)
+        img_ids = coco.getImgIds()
+        img_ids.sort()
+        cat_ids = coco.getCatIds()
+        ct = 0
+
+        catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
+        cname2cid = dict({
+            coco.loadCats(catid)[0]['name']: clsid
+            for catid, clsid in catid2clsid.items()
+        })
+
+        for img_id in img_ids:
+            img_anno = coco.loadImgs([img_id])[0]
+            im_fname = img_anno['file_name']
+            im_w = float(img_anno['width'])
+            im_h = float(img_anno['height'])
+
+            im_path = os.path.join(image_dir,
+                                   im_fname) if image_dir else im_fname
+            if not os.path.exists(im_path):
+                logging.warning('Illegal image file: {}, and it will be '
+                                'ignored'.format(im_path))
+                continue
+
+            if im_w < 0 or im_h < 0:
+                logging.warning(
+                    'Illegal width: {} or height: {} in annotation, '
+                    'and im_id: {} will be ignored'.format(im_w, im_h, img_id))
+                continue
+
+            im_info = {
+                'image': im_path,
+                'im_id': np.array([img_id]),
+                'image_shape': np.array(
+                    [im_h, im_w], dtype=np.int32)
+            }
+
+            ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
+            instances = coco.loadAnns(ins_anno_ids)
+
+            is_crowds = []
+            gt_classes = []
+            gt_bboxs = []
+            gt_scores = []
+            difficults = []
+
+            for inst in instances:
+                # check gt bbox
+                if inst.get('ignore', False):
+                    continue
+                if 'bbox' not in inst.keys():
+                    continue
+                else:
+                    if not any(np.array(inst['bbox'])):
+                        continue
+
+                # read box
+                x1, y1, box_w, box_h = inst['bbox']
+                x2 = x1 + box_w
+                y2 = y1 + box_h
+                eps = 1e-5
+                if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
+                    inst['clean_bbox'] = [
+                        round(float(x), 3) for x in [x1, y1, x2, y2]
+                    ]
+                else:
+                    logging.warning(
+                        'Found an invalid bbox in annotations: im_id: {}, '
+                        'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
+                            img_id, float(inst['area']), x1, y1, x2, y2))
+
+                is_crowds.append([inst['iscrowd']])
+                gt_classes.append([inst['category_id']])
+                gt_bboxs.append(inst['clean_bbox'])
+                gt_scores.append([1.])
+                difficults.append([0])
+
+                annotations['annotations'].append({
+                    'iscrowd': inst['iscrowd'],
+                    'image_id': int(inst['image_id']),
+                    'bbox': inst['clean_bbox'],
+                    'area': inst['area'],
+                    'category_id': inst['category_id'],
+                    'id': inst['id'],
+                    'difficult': 0
+                })
+
+            label_info = {
+                'is_crowd': np.array(is_crowds),
+                'gt_class': np.array(gt_classes),
+                'gt_bbox': np.array(gt_bboxs).astype(np.float32),
+                'gt_score': np.array(gt_scores).astype(np.float32),
+                'difficult': np.array(difficults),
+            }
+
+            if label_info['gt_bbox'].size > 0:
+                self.file_list.append({ ** im_info, ** label_info})
+                annotations['images'].append({
+                    'height': im_h,
+                    'width': im_w,
+                    'id': int(im_info['im_id']),
+                    'file_name': osp.split(im_info['image'])[1]
+                })
+            else:
+                neg_file_list.append({ ** im_info, ** label_info})
+            ct += 1
+
+            if self.use_mix:
+                self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances))
+            else:
+                self.num_max_boxes = max(self.num_max_boxes, len(instances))
+
+        if not ct:
+            logging.error(
+                "No coco record found in %s' % (file_list)", exit=True)
+        self.pos_num = len(self.file_list)
+        if self.allow_empty and neg_file_list:
+            self.file_list += self._sample_empty(neg_file_list)
+        logging.info(
+            "{} samples in file {}, including {} positive samples and {} negative samples.".
+            format(
+                len(self.file_list), anno_path, self.pos_num,
+                len(self.file_list) - self.pos_num))
+        self.num_samples = len(self.file_list)
+        self.coco_gt = COCO()
+        self.coco_gt.dataset = annotations
+        self.coco_gt.createIndex()
+
+        self._epoch = 0
+
+    def __getitem__(self, idx):
+        sample = copy.deepcopy(self.file_list[idx])
+        if self.data_fields is not None:
+            sample = {k: sample[k] for k in self.data_fields}
+        if self.use_mix and (self.mixup_op.mixup_epoch == -1 or
+                             self._epoch < self.mixup_op.mixup_epoch):
+            if self.num_samples > 1:
+                mix_idx = random.randint(1, self.num_samples - 1)
+                mix_pos = (mix_idx + idx) % self.num_samples
+            else:
+                mix_pos = 0
+            sample_mix = copy.deepcopy(self.file_list[mix_pos])
+            if self.data_fields is not None:
+                sample_mix = {k: sample_mix[k] for k in self.data_fields}
+            sample = self.mixup_op(sample=[
+                ImgDecoder(to_rgb=False)(sample),
+                ImgDecoder(to_rgb=False)(sample_mix)
+            ])
+        sample = self.transforms(sample)
+        return sample
+
+    def __len__(self):
+        return self.num_samples
+
+    def set_epoch(self, epoch_id):
+        self._epoch = epoch_id
+
+    def cluster_yolo_anchor(self,
+                            num_anchors,
+                            image_size,
+                            cache=True,
+                            cache_path=None,
+                            iters=300,
+                            gen_iters=1000,
+                            thresh=.25):
+        """
+        Cluster YOLO anchors.
+
+        Reference:
+            https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
+
+        Args:
+            num_anchors (int): number of clusters
+            image_size (list or int): [h, w], being an int means image height and image width are the same.
+            cache (bool): whether using cache
+            cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset.
+            iters (int, optional): iters of kmeans algorithm
+            gen_iters (int, optional): iters of genetic algorithm
+            threshold (float, optional): anchor scale threshold
+            verbose (bool, optional): whether print results
+        """
+        if cache_path is None:
+            cache_path = self.data_dir
+        cluster = YOLOAnchorCluster(
+            num_anchors=num_anchors,
+            dataset=self,
+            image_size=image_size,
+            cache=cache,
+            cache_path=cache_path,
+            iters=iters,
+            gen_iters=gen_iters,
+            thresh=thresh)
+        anchors = cluster()
+        return anchors
+
+    def add_negative_samples(self, image_dir, empty_ratio=1):
+        """将背景图片加入训练
+
+        Args:
+            image_dir (str):背景图片所在的文件夹目录。
+            empty_ratio (float or None): 用于指定负样本占总样本数的比例。如果为None,保留数据集初始化是设置的`empty_ratio`值,
+                否则更新原有`empty_ratio`值。如果小于0或大于等于1,则保留全部的负样本。默认为1。
+
+        """
+        import cv2
+        if not osp.isdir(image_dir):
+            raise Exception("{} is not a valid image directory.".format(
+                image_dir))
+        if empty_ratio is not None:
+            self.empty_ratio = empty_ratio
+        image_list = os.listdir(image_dir)
+        max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds()))
+        neg_file_list = list()
+        for image in image_list:
+            if not is_pic(image):
+                continue
+            gt_bbox = np.zeros((0, 4), dtype=np.float32)
+            gt_class = np.zeros((0, 1), dtype=np.int32)
+            gt_score = np.zeros((0, 1), dtype=np.float32)
+            is_crowd = np.zeros((0, 1), dtype=np.int32)
+            difficult = np.zeros((0, 1), dtype=np.int32)
+
+            max_img_id += 1
+            im_fname = osp.join(image_dir, image)
+            img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED)
+            im_h, im_w, im_c = img_data.shape
+
+            im_info = {
+                'im_id': np.asarray([max_img_id]),
+                'image_shape': np.array(
+                    [im_h, im_w], dtype=np.int32)
+            }
+            label_info = {
+                'is_crowd': is_crowd,
+                'gt_class': gt_class,
+                'gt_bbox': gt_bbox,
+                'gt_score': gt_score,
+                'difficult': difficult
+            }
+            if 'gt_poly' in self.file_list[0]:
+                label_info['gt_poly'] = []
+
+            neg_file_list.append({'image': im_fname, ** im_info, ** label_info})
+        if neg_file_list:
+            self.allow_empty = True
+            self.file_list += self._sample_empty(neg_file_list)
+        logging.info(
+            "{} negative samples added. Dataset contains {} positive samples and {} negative samples.".
+            format(
+                len(self.file_list) - self.num_samples, self.pos_num,
+                len(self.file_list) - self.pos_num))
+        self.num_samples = len(self.file_list)
+
+    def _sample_empty(self, neg_file_list):
+        if 0. <= self.empty_ratio < 1.:
+            import random
+            total_num = len(self.file_list)
+            neg_num = total_num - self.pos_num
+            sample_num = min((total_num * self.empty_ratio - neg_num) //
+                             (1 - self.empty_ratio), len(neg_file_list))
+            return random.sample(neg_file_list, sample_num)
+        else:
+            return neg_file_list