|
@@ -20,7 +20,174 @@ import paddlers.transforms as T
|
|
|
from testing_utils import CommonTest
|
|
|
|
|
|
|
|
|
-class TestSegSliderPredict(CommonTest):
|
|
|
+class _TestSliderPredictNamespace:
|
|
|
+ class TestSliderPredict(CommonTest):
|
|
|
+ def test_blocksize_and_overlap_whole(self):
|
|
|
+ # Original image size (256, 256)
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_path,
|
|
|
+ self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # Whole-image inference using slider_predict()
|
|
|
+ save_dir = osp.join(td, 'pred1')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 256, 0,
|
|
|
+ self.transforms)
|
|
|
+ pred1 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` == `overlap`
|
|
|
+ save_dir = osp.join(td, 'pred2')
|
|
|
+ with self.assertRaises(ValueError):
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 128,
|
|
|
+ 128, self.transforms)
|
|
|
+
|
|
|
+ # `block_size` is a tuple
|
|
|
+ save_dir = osp.join(td, 'pred3')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, (128, 32),
|
|
|
+ 0, self.transforms)
|
|
|
+ pred3 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` and `overlap` are both tuples
|
|
|
+ save_dir = osp.join(td, 'pred4')
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, (128, 100),
|
|
|
+ (10, 5), self.transforms)
|
|
|
+ pred4 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # `block_size` larger than image size
|
|
|
+ save_dir = osp.join(td, 'pred5')
|
|
|
+ with self.assertRaises(ValueError):
|
|
|
+ self.model.slider_predict(self.image_path, save_dir, 512, 0,
|
|
|
+ self.transforms)
|
|
|
+
|
|
|
+ def test_merge_strategy(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # Whole-image inference using predict()
|
|
|
+ pred_whole = self.model.predict(self.image_path,
|
|
|
+ self.transforms)
|
|
|
+ pred_whole = pred_whole['label_map']
|
|
|
+
|
|
|
+ # 'keep_first'
|
|
|
+ save_dir = osp.join(td, 'keep_first')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first')
|
|
|
+ pred_keepfirst = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'keep_last'
|
|
|
+ save_dir = osp.join(td, 'keep_last')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_last')
|
|
|
+ pred_keeplast = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ # 'accum'
|
|
|
+ save_dir = osp.join(td, 'accum')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='accum')
|
|
|
+ pred_accum = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_accum.shape, pred_whole.shape)
|
|
|
+
|
|
|
+ def test_geo_info(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ _, geo_info_in = T.decode_image(
|
|
|
+ self.ref_path, read_geo_info=True)
|
|
|
+ self.model.slider_predict(self.image_path, td, 128, 0,
|
|
|
+ self.transforms)
|
|
|
+ _, geo_info_out = T.decode_image(
|
|
|
+ osp.join(td, self.basename), read_geo_info=True)
|
|
|
+ self.assertEqual(geo_info_out['geo_trans'],
|
|
|
+ geo_info_in['geo_trans'])
|
|
|
+ self.assertEqual(geo_info_out['geo_proj'],
|
|
|
+ geo_info_in['geo_proj'])
|
|
|
+
|
|
|
+ def test_batch_size(self):
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ # batch_size = 1
|
|
|
+ save_dir = osp.join(td, 'bs1')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first',
|
|
|
+ batch_size=1)
|
|
|
+ pred_bs1 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+
|
|
|
+ # batch_size = 4
|
|
|
+ save_dir = osp.join(td, 'bs4')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first',
|
|
|
+ batch_size=4)
|
|
|
+ pred_bs4 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_bs4, pred_bs1)
|
|
|
+
|
|
|
+ # batch_size = 8
|
|
|
+ save_dir = osp.join(td, 'bs4')
|
|
|
+ self.model.slider_predict(
|
|
|
+ self.image_path,
|
|
|
+ save_dir,
|
|
|
+ 128,
|
|
|
+ 64,
|
|
|
+ self.transforms,
|
|
|
+ merge_strategy='keep_first',
|
|
|
+ batch_size=8)
|
|
|
+ pred_bs8 = T.decode_image(
|
|
|
+ osp.join(save_dir, self.basename),
|
|
|
+ read_raw=True,
|
|
|
+ decode_sar=False)
|
|
|
+ self.check_output_equal(pred_bs8, pred_bs1)
|
|
|
+
|
|
|
+
|
|
|
+class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
|
|
|
def setUp(self):
|
|
|
self.model = pdrs.tasks.seg.UNet(in_channels=10)
|
|
|
self.transforms = T.Compose([
|
|
@@ -28,239 +195,18 @@ class TestSegSliderPredict(CommonTest):
|
|
|
T.ArrangeSegmenter('test')
|
|
|
])
|
|
|
self.image_path = "data/ssst/multispectral.tif"
|
|
|
- self.basename = osp.basename(self.image_path)
|
|
|
-
|
|
|
- def test_blocksize_and_overlap_whole(self):
|
|
|
- # Original image size (256, 256)
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- # Whole-image inference using predict()
|
|
|
- pred_whole = self.model.predict(self.image_path, self.transforms)
|
|
|
- pred_whole = pred_whole['label_map']
|
|
|
-
|
|
|
- # Whole-image inference using slider_predict()
|
|
|
- save_dir = osp.join(td, 'pred1')
|
|
|
- self.model.slider_predict(self.image_path, save_dir, 256, 0,
|
|
|
- self.transforms)
|
|
|
- pred1 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` == `overlap`
|
|
|
- save_dir = osp.join(td, 'pred2')
|
|
|
- with self.assertRaises(ValueError):
|
|
|
- self.model.slider_predict(self.image_path, save_dir, 128, 128,
|
|
|
- self.transforms)
|
|
|
-
|
|
|
- # `block_size` is a tuple
|
|
|
- save_dir = osp.join(td, 'pred3')
|
|
|
- self.model.slider_predict(self.image_path, save_dir, (128, 32), 0,
|
|
|
- self.transforms)
|
|
|
- pred3 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` and `overlap` are both tuples
|
|
|
- save_dir = osp.join(td, 'pred4')
|
|
|
- self.model.slider_predict(self.image_path, save_dir, (128, 100),
|
|
|
- (10, 5), self.transforms)
|
|
|
- pred4 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` larger than image size
|
|
|
- save_dir = osp.join(td, 'pred5')
|
|
|
- with self.assertRaises(ValueError):
|
|
|
- self.model.slider_predict(self.image_path, save_dir, 512, 0,
|
|
|
- self.transforms)
|
|
|
-
|
|
|
- def test_merge_strategy(self):
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- # Whole-image inference using predict()
|
|
|
- pred_whole = self.model.predict(self.image_path, self.transforms)
|
|
|
- pred_whole = pred_whole['label_map']
|
|
|
-
|
|
|
- # 'keep_first'
|
|
|
- save_dir = osp.join(td, 'keep_first')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_path,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='keep_first')
|
|
|
- pred_keepfirst = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # 'keep_last'
|
|
|
- save_dir = osp.join(td, 'keep_last')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_path,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='keep_last')
|
|
|
- pred_keeplast = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # 'accum'
|
|
|
- save_dir = osp.join(td, 'accum')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_path,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='accum')
|
|
|
- pred_accum = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_accum.shape, pred_whole.shape)
|
|
|
+ self.ref_path = self.image_path
|
|
|
+ self.basename = osp.basename(self.ref_path)
|
|
|
|
|
|
- def test_geo_info(self):
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- _, geo_info_in = T.decode_image(self.image_path, read_geo_info=True)
|
|
|
- self.model.slider_predict(self.image_path, td, 128, 0,
|
|
|
- self.transforms)
|
|
|
- _, geo_info_out = T.decode_image(
|
|
|
- osp.join(td, self.basename), read_geo_info=True)
|
|
|
- self.assertEqual(geo_info_out['geo_trans'],
|
|
|
- geo_info_in['geo_trans'])
|
|
|
- self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])
|
|
|
|
|
|
-
|
|
|
-class TestCDSliderPredict(CommonTest):
|
|
|
+class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict):
|
|
|
def setUp(self):
|
|
|
self.model = pdrs.tasks.cd.BIT(in_channels=10)
|
|
|
self.transforms = T.Compose([
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
|
|
|
T.ArrangeChangeDetector('test')
|
|
|
])
|
|
|
- self.image_paths = ("data/ssmt/multispectral_t1.tif",
|
|
|
- "data/ssmt/multispectral_t2.tif")
|
|
|
- self.basename = osp.basename(self.image_paths[0])
|
|
|
-
|
|
|
- def test_blocksize_and_overlap_whole(self):
|
|
|
- # Original image size (256, 256)
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- # Whole-image inference using predict()
|
|
|
- pred_whole = self.model.predict(self.image_paths, self.transforms)
|
|
|
- pred_whole = pred_whole['label_map']
|
|
|
-
|
|
|
- # Whole-image inference using slider_predict()
|
|
|
- save_dir = osp.join(td, 'pred1')
|
|
|
- self.model.slider_predict(self.image_paths, save_dir, 256, 0,
|
|
|
- self.transforms)
|
|
|
- pred1 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred1.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` == `overlap`
|
|
|
- save_dir = osp.join(td, 'pred2')
|
|
|
- with self.assertRaises(ValueError):
|
|
|
- self.model.slider_predict(self.image_paths, save_dir, 128, 128,
|
|
|
- self.transforms)
|
|
|
-
|
|
|
- # `block_size` is a tuple
|
|
|
- save_dir = osp.join(td, 'pred3')
|
|
|
- self.model.slider_predict(self.image_paths, save_dir, (128, 32), 0,
|
|
|
- self.transforms)
|
|
|
- pred3 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred3.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` and `overlap` are both tuples
|
|
|
- save_dir = osp.join(td, 'pred4')
|
|
|
- self.model.slider_predict(self.image_paths, save_dir, (128, 100),
|
|
|
- (10, 5), self.transforms)
|
|
|
- pred4 = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred4.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # `block_size` larger than image size
|
|
|
- save_dir = osp.join(td, 'pred5')
|
|
|
- with self.assertRaises(ValueError):
|
|
|
- self.model.slider_predict(self.image_paths, save_dir, 512, 0,
|
|
|
- self.transforms)
|
|
|
-
|
|
|
- def test_merge_strategy(self):
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- # Whole-image inference using predict()
|
|
|
- pred_whole = self.model.predict(self.image_paths, self.transforms)
|
|
|
- pred_whole = pred_whole['label_map']
|
|
|
-
|
|
|
- # 'keep_first'
|
|
|
- save_dir = osp.join(td, 'keep_first')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_paths,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='keep_first')
|
|
|
- pred_keepfirst = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # 'keep_last'
|
|
|
- save_dir = osp.join(td, 'keep_last')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_paths,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='keep_last')
|
|
|
- pred_keeplast = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
|
|
|
-
|
|
|
- # 'accum'
|
|
|
- save_dir = osp.join(td, 'accum')
|
|
|
- self.model.slider_predict(
|
|
|
- self.image_paths,
|
|
|
- save_dir,
|
|
|
- 128,
|
|
|
- 64,
|
|
|
- self.transforms,
|
|
|
- merge_strategy='accum')
|
|
|
- pred_accum = T.decode_image(
|
|
|
- osp.join(save_dir, self.basename),
|
|
|
- to_uint8=False,
|
|
|
- decode_sar=False)
|
|
|
- self.check_output_equal(pred_accum.shape, pred_whole.shape)
|
|
|
-
|
|
|
- def test_geo_info(self):
|
|
|
- with tempfile.TemporaryDirectory() as td:
|
|
|
- _, geo_info_in = T.decode_image(
|
|
|
- self.image_paths[0], read_geo_info=True)
|
|
|
- self.model.slider_predict(self.image_paths, td, 128, 0,
|
|
|
- self.transforms)
|
|
|
- _, geo_info_out = T.decode_image(
|
|
|
- osp.join(td, self.basename), read_geo_info=True)
|
|
|
- self.assertEqual(geo_info_out['geo_trans'],
|
|
|
- geo_info_in['geo_trans'])
|
|
|
- self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])
|
|
|
+ self.image_path = ("data/ssmt/multispectral_t1.tif",
|
|
|
+ "data/ssmt/multispectral_t2.tif")
|
|
|
+ self.ref_path = self.image_path[0]
|
|
|
+ self.basename = osp.basename(self.ref_path)
|