|
@@ -1,54 +0,0 @@
|
|
|
-import sys
|
|
|
-
|
|
|
-sys.path.append("/ssd2/pengjuncai/PaddleRS")
|
|
|
-
|
|
|
-import paddlers as pdrs
|
|
|
-from paddlers import transforms as T
|
|
|
-
|
|
|
-train_transforms = T.Compose([
|
|
|
- T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
|
|
|
- T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
|
|
|
- T.RandomHorizontalFlip(), T.BatchRandomResize(
|
|
|
- target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
|
|
|
- interp='RANDOM'), T.Normalize(
|
|
|
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
-])
|
|
|
-
|
|
|
-eval_transforms = T.Compose([
|
|
|
- T.Resize(
|
|
|
- target_size=608, interp='CUBIC'), T.Normalize(
|
|
|
- mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
-])
|
|
|
-
|
|
|
-
|
|
|
-train_dataset = pdrs.datasets.VOCDetection(
|
|
|
- data_dir='insect_det',
|
|
|
- file_list='insect_det/train_list.txt',
|
|
|
- label_list='insect_det/labels.txt',
|
|
|
- transforms=train_transforms,
|
|
|
- shuffle=True)
|
|
|
-
|
|
|
-eval_dataset = pdrs.datasets.VOCDetection(
|
|
|
- data_dir='insect_det',
|
|
|
- file_list='insect_det/val_list.txt',
|
|
|
- label_list='insect_det/labels.txt',
|
|
|
- transforms=eval_transforms,
|
|
|
- shuffle=False)
|
|
|
-
|
|
|
-
|
|
|
-num_classes = len(train_dataset.labels)
|
|
|
-model = pdrs.tasks.det.PPYOLO(num_classes=num_classes, backbone='ResNet50_vd_dcn')
|
|
|
-
|
|
|
-model.train(
|
|
|
- num_epochs=200,
|
|
|
- train_dataset=train_dataset,
|
|
|
- train_batch_size=8,
|
|
|
- eval_dataset=eval_dataset,
|
|
|
- pretrain_weights='COCO',
|
|
|
- learning_rate=0.005 / 12,
|
|
|
- warmup_steps=500,
|
|
|
- warmup_start_lr=0.0,
|
|
|
- save_interval_epochs=5,
|
|
|
- lr_decay_epochs=[85, 135],
|
|
|
- save_dir='output/ppyolo_r50vd_dcn',
|
|
|
- use_vdl=True)
|