|
@@ -15,7 +15,6 @@
|
|
|
import math
|
|
|
import os.path as osp
|
|
|
import numpy as np
|
|
|
-import cv2
|
|
|
from collections import OrderedDict
|
|
|
import paddle
|
|
|
import paddle.nn.functional as F
|
|
@@ -26,8 +25,10 @@ from paddlers.transforms import arrange_transforms
|
|
|
from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
import paddlers.utils.logging as logging
|
|
|
from .base import BaseModel
|
|
|
-from .utils import seg_metrics as metrics
|
|
|
-from paddlers.utils.checkpoint import seg_pretrain_weights_dict
|
|
|
+from paddlers.models.ppcls.metric import build_metrics
|
|
|
+from paddlers.models.ppcls.loss import build_loss
|
|
|
+from paddlers.models.ppcls.data.postprocess import build_postprocess
|
|
|
+from paddlers.utils.checkpoint import imagenet_weights
|
|
|
from paddlers.transforms import Decode, Resize
|
|
|
|
|
|
__all__ = ["ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C"]
|
|
@@ -49,8 +50,10 @@ class BaseClassifier(BaseModel):
|
|
|
self.model_name = model_name
|
|
|
self.num_classes = num_classes
|
|
|
self.use_mixed_loss = use_mixed_loss
|
|
|
+ self.metrics = None
|
|
|
self.losses = None
|
|
|
self.labels = None
|
|
|
+ self._postprocess = None
|
|
|
if params.get('with_net', True):
|
|
|
params.pop('with_net', None)
|
|
|
self.net = self.build_net(**params)
|
|
@@ -97,95 +100,35 @@ class BaseClassifier(BaseModel):
|
|
|
]
|
|
|
return input_spec
|
|
|
|
|
|
- # FIXME: use ppcls instead of ppseg, in infet / metrics and etc.
|
|
|
def run(self, net, inputs, mode):
|
|
|
net_out = net(inputs[0])
|
|
|
- logit = net_out[0]
|
|
|
+ label = paddle.to_tensor(inputs[1], dtype="int64")
|
|
|
outputs = OrderedDict()
|
|
|
if mode == 'test':
|
|
|
- origin_shape = inputs[1]
|
|
|
- if self.status == 'Infer':
|
|
|
- label_map_list, score_map_list = self._postprocess(
|
|
|
- net_out, origin_shape, transforms=inputs[2])
|
|
|
- else:
|
|
|
- logit_list = self._postprocess(
|
|
|
- logit, origin_shape, transforms=inputs[2])
|
|
|
- label_map_list = []
|
|
|
- score_map_list = []
|
|
|
- for logit in logit_list:
|
|
|
- logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
|
|
|
- label_map_list.append(
|
|
|
- paddle.argmax(
|
|
|
- logit, axis=-1, keepdim=False, dtype='int32')
|
|
|
- .squeeze().numpy())
|
|
|
- score_map_list.append(
|
|
|
- F.softmax(
|
|
|
- logit, axis=-1).squeeze().numpy().astype(
|
|
|
- 'float32'))
|
|
|
- outputs['label_map'] = label_map_list
|
|
|
- outputs['score_map'] = score_map_list
|
|
|
+ result = self._postprocess(net_out)
|
|
|
+ outputs = result[0]
|
|
|
|
|
|
if mode == 'eval':
|
|
|
- if self.status == 'Infer':
|
|
|
- pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
|
|
|
- else:
|
|
|
- pred = paddle.argmax(
|
|
|
- logit, axis=1, keepdim=True, dtype='int32')
|
|
|
- label = inputs[1]
|
|
|
- origin_shape = [label.shape[-2:]]
|
|
|
- pred = self._postprocess(
|
|
|
- pred, origin_shape, transforms=inputs[2])[0] # NCHW
|
|
|
- intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
|
|
|
- pred, label, self.num_classes)
|
|
|
- outputs['intersect_area'] = intersect_area
|
|
|
- outputs['pred_area'] = pred_area
|
|
|
- outputs['label_area'] = label_area
|
|
|
- outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
|
|
|
- self.num_classes)
|
|
|
+ # print(self._postprocess(net_out)[0]) # for test
|
|
|
+ label = paddle.unsqueeze(label, axis=-1)
|
|
|
+ metric_dict = self.metrics(net_out, label)
|
|
|
+ outputs['top1'] = metric_dict["top1"]
|
|
|
+ outputs['top5'] = metric_dict["top5"]
|
|
|
+
|
|
|
if mode == 'train':
|
|
|
- loss_list = metrics.loss_computation(
|
|
|
- logits_list=net_out, labels=inputs[1], losses=self.losses)
|
|
|
- loss = sum(loss_list)
|
|
|
- outputs['loss'] = loss
|
|
|
+ loss_list = self.losses(net_out, label)
|
|
|
+ outputs['loss'] = loss_list['loss']
|
|
|
return outputs
|
|
|
|
|
|
- # FIXME: use ppcls instead of ppseg, in loss.
|
|
|
+ def default_metric(self):
|
|
|
+ # TODO: other metrics
|
|
|
+ default_config = [{"TopkAcc":{"topk": [1, 5]}}]
|
|
|
+ return build_metrics(default_config)
|
|
|
+
|
|
|
def default_loss(self):
|
|
|
- if isinstance(self.use_mixed_loss, bool):
|
|
|
- if self.use_mixed_loss:
|
|
|
- losses = [
|
|
|
- paddleseg.models.CrossEntropyLoss(),
|
|
|
- paddleseg.models.LovaszSoftmaxLoss()
|
|
|
- ]
|
|
|
- coef = [.8, .2]
|
|
|
- loss_type = [
|
|
|
- paddleseg.models.MixedLoss(
|
|
|
- losses=losses, coef=coef),
|
|
|
- ]
|
|
|
- else:
|
|
|
- loss_type = [paddleseg.models.CrossEntropyLoss()]
|
|
|
- else:
|
|
|
- losses, coef = list(zip(*self.use_mixed_loss))
|
|
|
- if not set(losses).issubset(
|
|
|
- ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
|
|
|
- raise ValueError(
|
|
|
- "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
|
|
|
- )
|
|
|
- losses = [getattr(paddleseg.models, loss)() for loss in losses]
|
|
|
- loss_type = [
|
|
|
- paddleseg.models.MixedLoss(
|
|
|
- losses=losses, coef=list(coef))
|
|
|
- ]
|
|
|
- if self.model_name == 'FastSCNN':
|
|
|
- loss_type *= 2
|
|
|
- loss_coef = [1.0, 0.4]
|
|
|
- elif self.model_name == 'BiSeNetV2':
|
|
|
- loss_type *= 5
|
|
|
- loss_coef = [1.0] * 5
|
|
|
- else:
|
|
|
- loss_coef = [1.0]
|
|
|
- losses = {'types': loss_type, 'coef': loss_coef}
|
|
|
- return losses
|
|
|
+ # TODO: mixed_loss
|
|
|
+ default_config = [{"CELoss":{"weight": 1.0}}]
|
|
|
+ return build_loss(default_config)
|
|
|
|
|
|
def default_optimizer(self,
|
|
|
parameters,
|
|
@@ -203,6 +146,14 @@ class BaseClassifier(BaseModel):
|
|
|
weight_decay=4e-5)
|
|
|
return optimizer
|
|
|
|
|
|
+ def default_postprocess(self, class_id_map_file):
|
|
|
+ default_config = {
|
|
|
+ "name": "Topk",
|
|
|
+ "topk": 1,
|
|
|
+ "class_id_map_file": class_id_map_file
|
|
|
+ }
|
|
|
+ return build_postprocess(default_config)
|
|
|
+
|
|
|
def train(self,
|
|
|
num_epochs,
|
|
|
train_dataset,
|
|
@@ -212,7 +163,7 @@ class BaseClassifier(BaseModel):
|
|
|
save_interval_epochs=1,
|
|
|
log_interval_steps=2,
|
|
|
save_dir='output',
|
|
|
- pretrain_weights='CITYSCAPES', # FIXME: fix clas's pretrain weights
|
|
|
+ pretrain_weights='IMAGENET',
|
|
|
learning_rate=0.01,
|
|
|
lr_decay_power=0.9,
|
|
|
early_stop=False,
|
|
@@ -255,6 +206,9 @@ class BaseClassifier(BaseModel):
|
|
|
self.labels = train_dataset.labels
|
|
|
if self.losses is None:
|
|
|
self.losses = self.default_loss()
|
|
|
+ self.metrics = self.default_metric()
|
|
|
+ self._postprocess = self.default_postprocess(train_dataset.label_list)
|
|
|
+ # print(self._postprocess.class_id_map)
|
|
|
|
|
|
if optimizer is None:
|
|
|
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
@@ -265,7 +219,7 @@ class BaseClassifier(BaseModel):
|
|
|
self.optimizer = optimizer
|
|
|
|
|
|
if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
|
|
- if pretrain_weights not in seg_pretrain_weights_dict[
|
|
|
+ if pretrain_weights not in imagenet_weights[
|
|
|
self.model_name]:
|
|
|
logging.warning(
|
|
|
"Path of pretrain_weights('{}') does not exist!".format(
|
|
@@ -273,9 +227,9 @@ class BaseClassifier(BaseModel):
|
|
|
logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
|
|
"If don't want to use pretrain weights, "
|
|
|
"set pretrain_weights to be None.".format(
|
|
|
- seg_pretrain_weights_dict[self.model_name][
|
|
|
+ imagenet_weights[self.model_name][
|
|
|
0]))
|
|
|
- pretrain_weights = seg_pretrain_weights_dict[self.model_name][
|
|
|
+ pretrain_weights = imagenet_weights[self.model_name][
|
|
|
0]
|
|
|
elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
|
|
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
@@ -370,12 +324,8 @@ class BaseClassifier(BaseModel):
|
|
|
|
|
|
Returns:
|
|
|
collections.OrderedDict with key-value pairs:
|
|
|
- {"miou": `mean intersection over union`,
|
|
|
- "category_iou": `category-wise mean intersection over union`,
|
|
|
- "oacc": `overall accuracy`,
|
|
|
- "category_acc": `category-wise accuracy`,
|
|
|
- "kappa": ` kappa coefficient`,
|
|
|
- "category_F1-score": `F1 score`}.
|
|
|
+ {"top1": `acc of top1`,
|
|
|
+ "top5": `acc of top5`}.
|
|
|
|
|
|
"""
|
|
|
arrange_transforms(
|
|
@@ -403,73 +353,26 @@ class BaseClassifier(BaseModel):
|
|
|
self.eval_data_loader = self.build_data_loader(
|
|
|
eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
|
|
|
- intersect_area_all = 0
|
|
|
- pred_area_all = 0
|
|
|
- label_area_all = 0
|
|
|
- conf_mat_all = []
|
|
|
logging.info(
|
|
|
"Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
eval_dataset.num_samples,
|
|
|
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
+
|
|
|
+ top1s = []
|
|
|
+ top5s = []
|
|
|
with paddle.no_grad():
|
|
|
for step, data in enumerate(self.eval_data_loader):
|
|
|
data.append(eval_dataset.transforms.transforms)
|
|
|
outputs = self.run(self.net, data, 'eval')
|
|
|
- pred_area = outputs['pred_area']
|
|
|
- label_area = outputs['label_area']
|
|
|
- intersect_area = outputs['intersect_area']
|
|
|
- conf_mat = outputs['conf_mat']
|
|
|
-
|
|
|
- # Gather from all ranks
|
|
|
- if nranks > 1:
|
|
|
- intersect_area_list = []
|
|
|
- pred_area_list = []
|
|
|
- label_area_list = []
|
|
|
- conf_mat_list = []
|
|
|
- paddle.distributed.all_gather(intersect_area_list,
|
|
|
- intersect_area)
|
|
|
- paddle.distributed.all_gather(pred_area_list, pred_area)
|
|
|
- paddle.distributed.all_gather(label_area_list, label_area)
|
|
|
- paddle.distributed.all_gather(conf_mat_list, conf_mat)
|
|
|
-
|
|
|
- # Some image has been evaluated and should be eliminated in last iter
|
|
|
- if (step + 1) * nranks > len(eval_dataset):
|
|
|
- valid = len(eval_dataset) - step * nranks
|
|
|
- intersect_area_list = intersect_area_list[:valid]
|
|
|
- pred_area_list = pred_area_list[:valid]
|
|
|
- label_area_list = label_area_list[:valid]
|
|
|
- conf_mat_list = conf_mat_list[:valid]
|
|
|
-
|
|
|
- intersect_area_all += sum(intersect_area_list)
|
|
|
- pred_area_all += sum(pred_area_list)
|
|
|
- label_area_all += sum(label_area_list)
|
|
|
- conf_mat_all.extend(conf_mat_list)
|
|
|
-
|
|
|
- else:
|
|
|
- intersect_area_all = intersect_area_all + intersect_area
|
|
|
- pred_area_all = pred_area_all + pred_area
|
|
|
- label_area_all = label_area_all + label_area
|
|
|
- conf_mat_all.append(conf_mat)
|
|
|
- # FIXME: fix metrics
|
|
|
- class_iou, miou = paddleseg.utils.metrics.mean_iou(
|
|
|
- intersect_area_all, pred_area_all, label_area_all)
|
|
|
- # TODO 确认是按oacc还是macc
|
|
|
- class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
|
|
|
- pred_area_all)
|
|
|
- kappa = paddleseg.utils.metrics.kappa(intersect_area_all,
|
|
|
- pred_area_all, label_area_all)
|
|
|
- category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
|
|
|
- label_area_all)
|
|
|
- eval_metrics = OrderedDict(
|
|
|
- zip([
|
|
|
- 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
|
|
- 'category_F1-score'
|
|
|
- ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
|
|
|
+ top1s.append(outputs["top1"])
|
|
|
+ top5s.append(outputs["top5"])
|
|
|
|
|
|
+ top1 = np.mean(top1s)
|
|
|
+ top5 = np.mean(top5s)
|
|
|
+ eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
|
|
|
if return_details:
|
|
|
- conf_mat = sum(conf_mat_all)
|
|
|
- eval_details = {'confusion_matrix': conf_mat.tolist()}
|
|
|
- return eval_metrics, eval_details
|
|
|
+ # TODO: add details
|
|
|
+ return eval_metrics, None
|
|
|
return eval_metrics
|
|
|
|
|
|
def predict(self, img_file, transforms=None):
|
|
@@ -485,10 +388,11 @@ class BaseClassifier(BaseModel):
|
|
|
|
|
|
Returns:
|
|
|
If img_file is a string or np.array, the result is a dict with key-value pairs:
|
|
|
- {"label map": `label map`, "score_map": `score map`}.
|
|
|
+ {"label map": `class_ids_map`, "scores_map": `label_names_map`}.
|
|
|
If img_file is a list, the result is a list composed of dicts with the corresponding fields:
|
|
|
- label_map(np.ndarray): the predicted label map (HW)
|
|
|
- score_map(np.ndarray): the prediction score map (HWC)
|
|
|
+ class_ids_map(np.ndarray): class_ids
|
|
|
+ scores_map(np.ndarray): scores
|
|
|
+ label_names_map(np.ndarray): label_names
|
|
|
|
|
|
"""
|
|
|
if transforms is None and not hasattr(self, 'test_transforms'):
|
|
@@ -504,21 +408,23 @@ class BaseClassifier(BaseModel):
|
|
|
self.net.eval()
|
|
|
data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
outputs = self.run(self.net, data, 'test')
|
|
|
- label_map_list = outputs['label_map']
|
|
|
- score_map_list = outputs['score_map']
|
|
|
+ label_list = outputs['class_ids']
|
|
|
+ score_list = outputs['scores']
|
|
|
+ name_list = outputs['label_names']
|
|
|
if isinstance(img_file, list):
|
|
|
prediction = [{
|
|
|
- 'label_map': l,
|
|
|
- 'score_map': s
|
|
|
- } for l, s in zip(label_map_list, score_map_list)]
|
|
|
+ 'class_ids_map': l,
|
|
|
+ 'scores_map': s,
|
|
|
+ 'label_names_map': n,
|
|
|
+ } for l, s, n in zip(label_list, score_list, name_list)]
|
|
|
else:
|
|
|
prediction = {
|
|
|
- 'label_map': label_map_list[0],
|
|
|
- 'score_map': score_map_list[0]
|
|
|
+ 'class_ids': label_list[0],
|
|
|
+ 'scores': score_list[0],
|
|
|
+ 'label_names': name_list[0]
|
|
|
}
|
|
|
return prediction
|
|
|
|
|
|
- # FIXME: adaptive clas
|
|
|
def _preprocess(self, images, transforms, to_tensor=True):
|
|
|
arrange_transforms(
|
|
|
model_type=self.model_type, transforms=transforms, mode='test')
|
|
@@ -587,84 +493,6 @@ class BaseClassifier(BaseModel):
|
|
|
batch_restore_list.append(restore_list)
|
|
|
return batch_restore_list
|
|
|
|
|
|
- # FIXME: adaptive clas
|
|
|
- def _postprocess(self, batch_pred, batch_origin_shape, transforms):
|
|
|
- batch_restore_list = BaseClassifier.get_transforms_shape_info(
|
|
|
- batch_origin_shape, transforms)
|
|
|
- if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
|
|
|
- return self._infer_postprocess(
|
|
|
- batch_label_map=batch_pred[0],
|
|
|
- batch_score_map=batch_pred[1],
|
|
|
- batch_restore_list=batch_restore_list)
|
|
|
- results = []
|
|
|
- if batch_pred.dtype == paddle.float32:
|
|
|
- mode = 'bilinear'
|
|
|
- else:
|
|
|
- mode = 'nearest'
|
|
|
- for pred, restore_list in zip(batch_pred, batch_restore_list):
|
|
|
- pred = paddle.unsqueeze(pred, axis=0)
|
|
|
- for item in restore_list[::-1]:
|
|
|
- h, w = item[1][0], item[1][1]
|
|
|
- if item[0] == 'resize':
|
|
|
- pred = F.interpolate(
|
|
|
- pred, (h, w), mode=mode, data_format='NCHW')
|
|
|
- elif item[0] == 'padding':
|
|
|
- x, y = item[2]
|
|
|
- pred = pred[:, :, y:y + h, x:x + w]
|
|
|
- else:
|
|
|
- pass
|
|
|
- results.append(pred)
|
|
|
- return results
|
|
|
-
|
|
|
- # FIXME: adaptive clas
|
|
|
- def _infer_postprocess(self, batch_label_map, batch_score_map,
|
|
|
- batch_restore_list):
|
|
|
- label_maps = []
|
|
|
- score_maps = []
|
|
|
- for label_map, score_map, restore_list in zip(
|
|
|
- batch_label_map, batch_score_map, batch_restore_list):
|
|
|
- if not isinstance(label_map, np.ndarray):
|
|
|
- label_map = paddle.unsqueeze(label_map, axis=[0, 3])
|
|
|
- score_map = paddle.unsqueeze(score_map, axis=0)
|
|
|
- for item in restore_list[::-1]:
|
|
|
- h, w = item[1][0], item[1][1]
|
|
|
- if item[0] == 'resize':
|
|
|
- if isinstance(label_map, np.ndarray):
|
|
|
- label_map = cv2.resize(
|
|
|
- label_map, (w, h), interpolation=cv2.INTER_NEAREST)
|
|
|
- score_map = cv2.resize(
|
|
|
- score_map, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
- else:
|
|
|
- label_map = F.interpolate(
|
|
|
- label_map, (h, w),
|
|
|
- mode='nearest',
|
|
|
- data_format='NHWC')
|
|
|
- score_map = F.interpolate(
|
|
|
- score_map, (h, w),
|
|
|
- mode='bilinear',
|
|
|
- data_format='NHWC')
|
|
|
- elif item[0] == 'padding':
|
|
|
- x, y = item[2]
|
|
|
- if isinstance(label_map, np.ndarray):
|
|
|
- label_map = label_map[..., y:y + h, x:x + w]
|
|
|
- score_map = score_map[..., y:y + h, x:x + w]
|
|
|
- else:
|
|
|
- label_map = label_map[:, :, y:y + h, x:x + w]
|
|
|
- score_map = score_map[:, :, y:y + h, x:x + w]
|
|
|
- else:
|
|
|
- pass
|
|
|
- label_map = label_map.squeeze()
|
|
|
- score_map = score_map.squeeze()
|
|
|
- if not isinstance(label_map, np.ndarray):
|
|
|
- label_map = label_map.numpy()
|
|
|
- score_map = score_map.numpy()
|
|
|
- label_maps.append(label_map.squeeze())
|
|
|
- score_maps.append(score_map.squeeze())
|
|
|
- return label_maps, score_maps
|
|
|
-
|
|
|
-__all__ = ["ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C"]
|
|
|
-
|
|
|
-
|
|
|
class ResNet50_vd(BaseClassifier):
|
|
|
def __init__(self,
|
|
|
num_classes=2,
|