|
@@ -0,0 +1,64 @@
|
|
|
+import os
|
|
|
+import paddlers as pdrs
|
|
|
+from paddlers import transforms as T
|
|
|
+
|
|
|
+# download dataset
|
|
|
+data_dir = 'sar_ship_1'
|
|
|
+if not os.path.exists(data_dir):
|
|
|
+ dataset_url = 'https://paddleseg.bj.bcebos.com/dataset/sar_ship_1.tar.gz'
|
|
|
+ pdrs.utils.download_and_decompress(dataset_url, path='./')
|
|
|
+
|
|
|
+# define transforms
|
|
|
+train_transforms = T.Compose([
|
|
|
+ T.RandomDistort(),
|
|
|
+ T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]),
|
|
|
+ T.RandomCrop(),
|
|
|
+ T.RandomHorizontalFlip(),
|
|
|
+ T.BatchRandomResize(
|
|
|
+ target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
|
|
|
+ interp='RANDOM'),
|
|
|
+ T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
+])
|
|
|
+
|
|
|
+eval_transforms = T.Compose([
|
|
|
+ T.Resize(
|
|
|
+ target_size=608, interp='CUBIC'), T.Normalize(
|
|
|
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
+])
|
|
|
+
|
|
|
+# define dataset
|
|
|
+train_file_list = os.path.join(data_dir, 'train.txt')
|
|
|
+val_file_list = os.path.join(data_dir, 'valid.txt')
|
|
|
+label_file_list = os.path.join(data_dir, 'labels.txt')
|
|
|
+train_dataset = pdrs.datasets.VOCDetection(
|
|
|
+ data_dir=data_dir,
|
|
|
+ file_list=train_file_list,
|
|
|
+ label_list=label_file_list,
|
|
|
+ transforms=train_transforms,
|
|
|
+ shuffle=True)
|
|
|
+
|
|
|
+eval_dataset = pdrs.datasets.VOCDetection(
|
|
|
+ data_dir=data_dir,
|
|
|
+ file_list=train_file_list,
|
|
|
+ label_list=label_file_list,
|
|
|
+ transforms=eval_transforms,
|
|
|
+ shuffle=False)
|
|
|
+
|
|
|
+# define models
|
|
|
+num_classes = len(train_dataset.labels)
|
|
|
+model = pdrs.tasks.det.FasterRCNN(num_classes=num_classes)
|
|
|
+
|
|
|
+# train
|
|
|
+model.train(
|
|
|
+ num_epochs=60,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=2,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ pretrain_weights='COCO',
|
|
|
+ learning_rate=0.005 / 12,
|
|
|
+ warmup_steps=10,
|
|
|
+ warmup_start_lr=0.0,
|
|
|
+ save_interval_epochs=5,
|
|
|
+ lr_decay_epochs=[20, 40],
|
|
|
+ save_dir='output/faster_rcnn_sar_ship',
|
|
|
+ use_vdl=True)
|