|
@@ -0,0 +1,224 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import paddle
|
|
|
+import paddle.nn as nn
|
|
|
+import paddle.nn.functional as F
|
|
|
+
|
|
|
+
|
|
|
+from .layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity
|
|
|
+from .param_init import normal_init, constant_init
|
|
|
+
|
|
|
+
|
|
|
+class UNetSiamConc(nn.Layer):
|
|
|
+ """
|
|
|
+ The FC-Siam-conc implementation based on PaddlePaddle.
|
|
|
+
|
|
|
+ The original article refers to
|
|
|
+ Caye Daudt, R., et al. "Fully convolutional siamese networks for change detection"
|
|
|
+ (https://arxiv.org/abs/1810.08462)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ in_channels (int): The number of bands of the input images.
|
|
|
+ num_classes (int): The number of target classes.
|
|
|
+ use_dropout (bool, optional): A bool value that indicates whether to use dropout layers.
|
|
|
+ When the model is trained on a relatively small dataset, the dropout layers help prevent
|
|
|
+ overfitting. Default: False.
|
|
|
+ """
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ in_channels,
|
|
|
+ num_classes,
|
|
|
+ use_dropout=False
|
|
|
+ ):
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256
|
|
|
+
|
|
|
+ self.use_dropout = use_dropout
|
|
|
+
|
|
|
+ self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True)
|
|
|
+ self.do11 = self._make_dropout()
|
|
|
+ self.conv12 = Conv3x3(C1, C1, norm=True, act=True)
|
|
|
+ self.do12 = self._make_dropout()
|
|
|
+ self.pool1 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv21 = Conv3x3(C1, C2, norm=True, act=True)
|
|
|
+ self.do21 = self._make_dropout()
|
|
|
+ self.conv22 = Conv3x3(C2, C2, norm=True, act=True)
|
|
|
+ self.do22 = self._make_dropout()
|
|
|
+ self.pool2 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv31 = Conv3x3(C2, C3, norm=True, act=True)
|
|
|
+ self.do31 = self._make_dropout()
|
|
|
+ self.conv32 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do32 = self._make_dropout()
|
|
|
+ self.conv33 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do33 = self._make_dropout()
|
|
|
+ self.pool3 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv41 = Conv3x3(C3, C4, norm=True, act=True)
|
|
|
+ self.do41 = self._make_dropout()
|
|
|
+ self.conv42 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do42 = self._make_dropout()
|
|
|
+ self.conv43 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do43 = self._make_dropout()
|
|
|
+ self.pool4 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1)
|
|
|
+
|
|
|
+ self.conv43d = Conv3x3(C5+C4, C4, norm=True, act=True)
|
|
|
+ self.do43d = self._make_dropout()
|
|
|
+ self.conv42d = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do42d = self._make_dropout()
|
|
|
+ self.conv41d = Conv3x3(C4, C3, norm=True, act=True)
|
|
|
+ self.do41d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1)
|
|
|
+
|
|
|
+ self.conv33d = Conv3x3(C4+C3, C3, norm=True, act=True)
|
|
|
+ self.do33d = self._make_dropout()
|
|
|
+ self.conv32d = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do32d = self._make_dropout()
|
|
|
+ self.conv31d = Conv3x3(C3, C2, norm=True, act=True)
|
|
|
+ self.do31d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1)
|
|
|
+
|
|
|
+ self.conv22d = Conv3x3(C3+C2, C2, norm=True, act=True)
|
|
|
+ self.do22d = self._make_dropout()
|
|
|
+ self.conv21d = Conv3x3(C2, C1, norm=True, act=True)
|
|
|
+ self.do21d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1)
|
|
|
+
|
|
|
+ self.conv12d = Conv3x3(C2+C1, C1, norm=True, act=True)
|
|
|
+ self.do12d = self._make_dropout()
|
|
|
+ self.conv11d = Conv3x3(C1, num_classes)
|
|
|
+
|
|
|
+ self.init_weight()
|
|
|
+
|
|
|
+ def forward(self, t1, t2):
|
|
|
+ # Encode t1
|
|
|
+ # Stage 1
|
|
|
+ x11 = self.do11(self.conv11(t1))
|
|
|
+ x12_1 = self.do12(self.conv12(x11))
|
|
|
+ x1p = self.pool1(x12_1)
|
|
|
+
|
|
|
+ # Stage 2
|
|
|
+ x21 = self.do21(self.conv21(x1p))
|
|
|
+ x22_1 = self.do22(self.conv22(x21))
|
|
|
+ x2p = self.pool2(x22_1)
|
|
|
+
|
|
|
+ # Stage 3
|
|
|
+ x31 = self.do31(self.conv31(x2p))
|
|
|
+ x32 = self.do32(self.conv32(x31))
|
|
|
+ x33_1 = self.do33(self.conv33(x32))
|
|
|
+ x3p = self.pool3(x33_1)
|
|
|
+
|
|
|
+ # Stage 4
|
|
|
+ x41 = self.do41(self.conv41(x3p))
|
|
|
+ x42 = self.do42(self.conv42(x41))
|
|
|
+ x43_1 = self.do43(self.conv43(x42))
|
|
|
+ x4p = self.pool4(x43_1)
|
|
|
+
|
|
|
+ # Encode t2
|
|
|
+ # Stage 1
|
|
|
+ x11 = self.do11(self.conv11(t2))
|
|
|
+ x12_2 = self.do12(self.conv12(x11))
|
|
|
+ x1p = self.pool1(x12_2)
|
|
|
+
|
|
|
+ # Stage 2
|
|
|
+ x21 = self.do21(self.conv21(x1p))
|
|
|
+ x22_2 = self.do22(self.conv22(x21))
|
|
|
+ x2p = self.pool2(x22_2)
|
|
|
+
|
|
|
+ # Stage 3
|
|
|
+ x31 = self.do31(self.conv31(x2p))
|
|
|
+ x32 = self.do32(self.conv32(x31))
|
|
|
+ x33_2 = self.do33(self.conv33(x32))
|
|
|
+ x3p = self.pool3(x33_2)
|
|
|
+
|
|
|
+ # Stage 4
|
|
|
+ x41 = self.do41(self.conv41(x3p))
|
|
|
+ x42 = self.do42(self.conv42(x41))
|
|
|
+ x43_2 = self.do43(self.conv43(x42))
|
|
|
+ x4p = self.pool4(x43_2)
|
|
|
+
|
|
|
+ # Decode
|
|
|
+ # Stage 4d
|
|
|
+ x4d = self.upconv4(x4p)
|
|
|
+ pad4 = (
|
|
|
+ 0,
|
|
|
+ paddle.shape(x43_1)[3]-paddle.shape(x4d)[3],
|
|
|
+ 0,
|
|
|
+ paddle.shape(x43_1)[2]-paddle.shape(x4d)[2]
|
|
|
+ )
|
|
|
+ x4d = paddle.concat([F.pad(x4d, pad=pad4, mode='replicate'), x43_1, x43_2], 1)
|
|
|
+ x43d = self.do43d(self.conv43d(x4d))
|
|
|
+ x42d = self.do42d(self.conv42d(x43d))
|
|
|
+ x41d = self.do41d(self.conv41d(x42d))
|
|
|
+
|
|
|
+ # Stage 3d
|
|
|
+ x3d = self.upconv3(x41d)
|
|
|
+ pad3 = (
|
|
|
+ 0,
|
|
|
+ paddle.shape(x33_1)[3]-paddle.shape(x3d)[3],
|
|
|
+ 0,
|
|
|
+ paddle.shape(x33_1)[2]-paddle.shape(x3d)[2]
|
|
|
+ )
|
|
|
+ x3d = paddle.concat([F.pad(x3d, pad=pad3, mode='replicate'), x33_1, x33_2], 1)
|
|
|
+ x33d = self.do33d(self.conv33d(x3d))
|
|
|
+ x32d = self.do32d(self.conv32d(x33d))
|
|
|
+ x31d = self.do31d(self.conv31d(x32d))
|
|
|
+
|
|
|
+ # Stage 2d
|
|
|
+ x2d = self.upconv2(x31d)
|
|
|
+ pad2 = (
|
|
|
+ 0,
|
|
|
+ paddle.shape(x22_1)[3]-paddle.shape(x2d)[3],
|
|
|
+ 0,
|
|
|
+ paddle.shape(x22_1)[2]-paddle.shape(x2d)[2]
|
|
|
+ )
|
|
|
+ x2d = paddle.concat([F.pad(x2d, pad=pad2, mode='replicate'), x22_1, x22_2], 1)
|
|
|
+ x22d = self.do22d(self.conv22d(x2d))
|
|
|
+ x21d = self.do21d(self.conv21d(x22d))
|
|
|
+
|
|
|
+ # Stage 1d
|
|
|
+ x1d = self.upconv1(x21d)
|
|
|
+ pad1 = (
|
|
|
+ 0,
|
|
|
+ paddle.shape(x12_1)[3]-paddle.shape(x1d)[3],
|
|
|
+ 0,
|
|
|
+ paddle.shape(x12_1)[2]-paddle.shape(x1d)[2]
|
|
|
+ )
|
|
|
+ x1d = paddle.concat([F.pad(x1d, pad=pad1, mode='replicate'), x12_1, x12_2], 1)
|
|
|
+ x12d = self.do12d(self.conv12d(x1d))
|
|
|
+ x11d = self.conv11d(x12d)
|
|
|
+
|
|
|
+ return x11d,
|
|
|
+
|
|
|
+ def init_weight(self):
|
|
|
+ for sublayer in self.sublayers():
|
|
|
+ if isinstance(sublayer, nn.Conv2D):
|
|
|
+ normal_init(sublayer.weight, std=0.001)
|
|
|
+ elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)):
|
|
|
+ constant_init(sublayer.weight, value=1.0)
|
|
|
+ constant_init(sublayer.bias, value=0.0)
|
|
|
+
|
|
|
+ def _make_dropout(self):
|
|
|
+ if self.use_dropout:
|
|
|
+ return nn.Dropout2D(p=0.2)
|
|
|
+ else:
|
|
|
+ return Identity()
|