|
@@ -250,7 +250,7 @@ class Compose(Transform):
|
|
|
All input images are in Height-Width-Channel ([H, W, C]) format.
|
|
|
|
|
|
Args:
|
|
|
- transforms (List[paddlers.transforms.Transform]): List of data preprocess or augmentations.
|
|
|
+ transforms (list[paddlers.transforms.Transform]): List of data preprocess or augmentations.
|
|
|
Raises:
|
|
|
TypeError: Invalid type of transforms.
|
|
|
ValueError: Invalid length of transforms.
|
|
@@ -260,7 +260,7 @@ class Compose(Transform):
|
|
|
super(Compose, self).__init__()
|
|
|
if not isinstance(transforms, list):
|
|
|
raise TypeError(
|
|
|
- 'Type of transforms is invalid. Must be List, but received is {}'
|
|
|
+ 'Type of transforms is invalid. Must be a list, but received is {}'
|
|
|
.format(type(transforms)))
|
|
|
if len(transforms) < 1:
|
|
|
raise ValueError(
|
|
@@ -308,7 +308,7 @@ class Resize(Transform):
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
Args:
|
|
|
- target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
|
|
|
+ target_size (int, list[int] | tuple[int]): Target size. If int, the height and width share the same target_size.
|
|
|
Otherwise, target_size represents [target height, target width].
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
|
|
Interpolation method of resize. Defaults to 'LINEAR'.
|
|
@@ -427,7 +427,7 @@ class RandomResize(Transform):
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
Args:
|
|
|
- target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
|
|
|
+ target_sizes (list[int] | list[list | tuple] | tuple[list | tuple]):
|
|
|
Multiple target sizes, each target size is an int or list/tuple.
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
|
|
Interpolation method of resize. Defaults to 'LINEAR'.
|
|
@@ -447,7 +447,7 @@ class RandomResize(Transform):
|
|
|
interp_dict.keys()))
|
|
|
self.interp = interp
|
|
|
assert isinstance(target_sizes, list), \
|
|
|
- "target_size must be List"
|
|
|
+ "target_size must be a list."
|
|
|
for i, item in enumerate(target_sizes):
|
|
|
if isinstance(item, int):
|
|
|
target_sizes[i] = (item, item)
|
|
@@ -507,7 +507,7 @@ class RandomResizeByShort(Transform):
|
|
|
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
|
|
|
|
|
|
Args:
|
|
|
- short_sizes (List[int]): Target size of the shorter side of the image(s).
|
|
|
+ short_sizes (list[int]): Target size of the shorter side of the image(s).
|
|
|
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
|
|
|
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
|
|
|
|
|
@@ -526,7 +526,7 @@ class RandomResizeByShort(Transform):
|
|
|
interp_dict.keys()))
|
|
|
self.interp = interp
|
|
|
assert isinstance(short_sizes, list), \
|
|
|
- "short_sizes must be List"
|
|
|
+ "short_sizes must be a list."
|
|
|
|
|
|
self.short_sizes = short_sizes
|
|
|
self.max_size = max_size
|
|
@@ -818,16 +818,16 @@ class RandomVerticalFlip(Transform):
|
|
|
|
|
|
class Normalize(Transform):
|
|
|
"""
|
|
|
- Apply min-max normalization to the image(s) in input.
|
|
|
+ Apply normalization to the input image(s). The normalization steps are:
|
|
|
1. im = (im - min_value) * 1 / (max_value - min_value)
|
|
|
2. im = im - mean
|
|
|
3. im = im / std
|
|
|
|
|
|
Args:
|
|
|
- mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
|
|
|
- std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
|
|
|
- min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
|
|
|
- max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
|
|
|
+ mean(list[float] | tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
|
|
|
+ std(list[float] | tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
|
|
|
+ min_val(list[float] | tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
|
|
|
+ max_val(list[float] | tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
|
|
|
"""
|
|
|
|
|
|
def __init__(self,
|
|
@@ -917,12 +917,12 @@ class RandomCrop(Transform):
|
|
|
4. Resize the cropped area to crop_size by crop_size.
|
|
|
|
|
|
Args:
|
|
|
- crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
|
|
|
+ crop_size(int, list[int] | tuple[int]): Target size of the cropped area. If None, the cropped area will not be
|
|
|
resized. Defaults to None.
|
|
|
- aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
|
|
|
- thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
|
|
|
+ aspect_ratio (list[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
|
|
|
+ thresholds (list[float], optional): Iou thresholds to decide a valid bbox crop.
|
|
|
Defaults to [.0, .1, .3, .5, .7, .9].
|
|
|
- scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
|
|
|
+ scaling (list[float], optional): Ratio between the cropped region and the original image in [min, max] format.
|
|
|
Defaults to [.3, 1.].
|
|
|
num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
|
|
|
allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
|
|
@@ -1140,7 +1140,7 @@ class RandomExpand(Transform):
|
|
|
Args:
|
|
|
upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
|
|
|
prob(float, optional): The probability of apply expanding. Defaults to .5.
|
|
|
- im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
|
|
|
+ im_padding_value(list[float] | tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
|
|
|
label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
|
|
|
|
|
|
See Also:
|