|
@@ -236,19 +236,19 @@ class FarSeg(nn.Layer):
|
|
|
and pattern recognition. 2020: 4096-4105.
|
|
|
|
|
|
Args:
|
|
|
- in_channels (int): The number of image channels for the input model. Default: 3.
|
|
|
- num_classes (int): The unique number of target classes. Default: 16.
|
|
|
- backbone (str): A backbone network, models available in `paddle.vision.models.resnet`. Default: resnet50.
|
|
|
- backbone_pretrained (bool): Whether the backbone network uses IMAGENET pretrained weights. Default: True.
|
|
|
- fpn_out_channels (int): The number of channels output by the feature pyramid network. Default: 256.
|
|
|
- fsr_out_channels (int): The number of channels output by the F-S relation module. Default: 256.
|
|
|
- scale_aware_proj (bool): Whether to use scale awareness in F-S relation module. Default: True.
|
|
|
- decoder_out_channels (int): The number of channels output by the decoder. Default: 128.
|
|
|
+ in_channels (int): Number of input channels.
|
|
|
+ num_classes (int): Unique number of target classes.
|
|
|
+ backbone (str, optional): Backbone network, one of models available in `paddle.vision.models.resnet`. Default: resnet50.
|
|
|
+ backbone_pretrained (bool, optional): Whether the backbone network uses IMAGENET pretrained weights. Default: True.
|
|
|
+ fpn_out_channels (int, optional): Number of channels output by the feature pyramid network. Default: 256.
|
|
|
+ fsr_out_channels (int, optional): Number of channels output by the F-S relation module. Default: 256.
|
|
|
+ scale_aware_proj (bool, optional): Whether to use scale awareness in F-S relation module. Default: True.
|
|
|
+ decoder_out_channels (int, optional): Number of channels output by the decoder. Default: 128.
|
|
|
"""
|
|
|
|
|
|
def __init__(self,
|
|
|
- in_channels=3,
|
|
|
- num_classes=16,
|
|
|
+ in_channels,
|
|
|
+ num_classes,
|
|
|
backbone='resnet50',
|
|
|
backbone_pretrained=True,
|
|
|
fpn_out_channels=256,
|