|
@@ -0,0 +1,361 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import os.path as osp
|
|
|
+import re
|
|
|
+import imghdr
|
|
|
+import platform
|
|
|
+from collections import OrderedDict
|
|
|
+from functools import partial
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+__all__ = ['build_input_from_file']
|
|
|
+
|
|
|
+
|
|
|
+def norm_path(path):
|
|
|
+ win_sep = "\\"
|
|
|
+ other_sep = "/"
|
|
|
+ if platform.system() == "Windows":
|
|
|
+ path = win_sep.join(path.split(other_sep))
|
|
|
+ else:
|
|
|
+ path = other_sep.join(path.split(win_sep))
|
|
|
+ return path
|
|
|
+
|
|
|
+
|
|
|
+def is_pic(im_path):
|
|
|
+ valid_suffix = [
|
|
|
+ 'JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png', 'npy'
|
|
|
+ ]
|
|
|
+ suffix = im_path.split('.')[-1]
|
|
|
+ if suffix in valid_suffix:
|
|
|
+ return True
|
|
|
+ im_format = imghdr.what(im_path)
|
|
|
+ _, ext = osp.splitext(im_path)
|
|
|
+ if im_format == 'tiff' or ext == '.img':
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+
|
|
|
+
|
|
|
+def get_full_path(p, prefix=''):
|
|
|
+ p = norm_path(p)
|
|
|
+ return osp.join(prefix, p)
|
|
|
+
|
|
|
+
|
|
|
+class ConstrSample(object):
|
|
|
+ def __init__(self, prefix, label_list):
|
|
|
+ super().__init__()
|
|
|
+ self.prefix = prefix
|
|
|
+ self.label_list_obj = self.read_label_list(label_list)
|
|
|
+ self.get_full_path = partial(get_full_path, prefix=self.prefix)
|
|
|
+
|
|
|
+ def read_label_list(self, label_list):
|
|
|
+ if label_list is None:
|
|
|
+ return None
|
|
|
+ cname2cid = OrderedDict()
|
|
|
+ label_id = 0
|
|
|
+ with open(label_list, 'r') as f:
|
|
|
+ for line in f:
|
|
|
+ cname2cid[line.strip()] = label_id
|
|
|
+ label_id += 1
|
|
|
+ return cname2cid
|
|
|
+
|
|
|
+ def __call__(self, *parts):
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+
|
|
|
+class ConstrSegSample(ConstrSample):
|
|
|
+ def __call__(self, im_path, mask_path):
|
|
|
+ return {
|
|
|
+ 'image': self.get_full_path(im_path),
|
|
|
+ 'mask': self.get_full_path(mask_path)
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+class ConstrCdSample(ConstrSample):
|
|
|
+ def __call__(self, im1_path, im2_path, mask_path, *aux_mask_paths):
|
|
|
+ sample = {
|
|
|
+ 'image_t1': self.get_full_path(im1_path),
|
|
|
+ 'image_t2': self.get_full_path(im2_path),
|
|
|
+ 'mask': self.get_full_path(mask_path)
|
|
|
+ }
|
|
|
+ if len(aux_mask_paths) > 0:
|
|
|
+ sample['aux_masks'] = [
|
|
|
+ self.get_full_path(p) for p in aux_mask_paths
|
|
|
+ ]
|
|
|
+ return sample
|
|
|
+
|
|
|
+
|
|
|
+class ConstrClasSample(ConstrSample):
|
|
|
+ def __call__(self, im_path, label):
|
|
|
+ return {'image': self.get_full_path(im_path), 'label': int(label)}
|
|
|
+
|
|
|
+
|
|
|
+class ConstrDetSample(ConstrSample):
|
|
|
+ def __init__(self, prefix, label_list):
|
|
|
+ super().__init__(prefix, label_list)
|
|
|
+ self.ct = 0
|
|
|
+
|
|
|
+ def __call__(self, im_path, ann_path):
|
|
|
+ im_path = self.get_full_path(im_path)
|
|
|
+ ann_path = self.get_full_path(ann_path)
|
|
|
+ # TODO: Precisely recognize the annotation format
|
|
|
+ if ann_path.endswith('.json'):
|
|
|
+ im_dir = im_path
|
|
|
+ return self._parse_coco_files(im_dir, ann_path)
|
|
|
+ elif ann_path.endswith('.xml'):
|
|
|
+ return self._parse_voc_files(im_path, ann_path)
|
|
|
+ else:
|
|
|
+ raise ValueError("Cannot recognize the annotation format")
|
|
|
+
|
|
|
+ def _parse_voc_files(self, im_path, ann_path):
|
|
|
+ import xml.etree.ElementTree as ET
|
|
|
+
|
|
|
+ cname2cid = self.label_list_obj
|
|
|
+ tree = ET.parse(ann_path)
|
|
|
+ # The xml file must contain id.
|
|
|
+ if tree.find('id') is None:
|
|
|
+ im_id = np.asarray([self.ct])
|
|
|
+ else:
|
|
|
+ self.ct = int(tree.find('id').text)
|
|
|
+ im_id = np.asarray([int(tree.find('id').text)])
|
|
|
+ pattern = re.compile('<size>', re.IGNORECASE)
|
|
|
+ size_tag = pattern.findall(str(ET.tostringlist(tree.getroot())))
|
|
|
+ if len(size_tag) > 0:
|
|
|
+ size_tag = size_tag[0][1:-1]
|
|
|
+ size_element = tree.find(size_tag)
|
|
|
+ pattern = re.compile('<width>', re.IGNORECASE)
|
|
|
+ width_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][
|
|
|
+ 1:-1]
|
|
|
+ im_w = float(size_element.find(width_tag).text)
|
|
|
+ pattern = re.compile('<height>', re.IGNORECASE)
|
|
|
+ height_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][
|
|
|
+ 1:-1]
|
|
|
+ im_h = float(size_element.find(height_tag).text)
|
|
|
+ else:
|
|
|
+ im_w = 0
|
|
|
+ im_h = 0
|
|
|
+
|
|
|
+ pattern = re.compile('<object>', re.IGNORECASE)
|
|
|
+ obj_match = pattern.findall(str(ET.tostringlist(tree.getroot())))
|
|
|
+ if len(obj_match) > 0:
|
|
|
+ obj_tag = obj_match[0][1:-1]
|
|
|
+ objs = tree.findall(obj_tag)
|
|
|
+ else:
|
|
|
+ objs = list()
|
|
|
+
|
|
|
+ num_bbox, i = len(objs), 0
|
|
|
+ gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
|
|
|
+ gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
|
|
|
+ gt_score = np.zeros((num_bbox, 1), dtype=np.float32)
|
|
|
+ is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
|
|
|
+ difficult = np.zeros((num_bbox, 1), dtype=np.int32)
|
|
|
+ for obj in objs:
|
|
|
+ pattern = re.compile('<name>', re.IGNORECASE)
|
|
|
+ name_tag = pattern.findall(str(ET.tostringlist(obj)))[0][1:-1]
|
|
|
+ cname = obj.find(name_tag).text.strip()
|
|
|
+ pattern = re.compile('<difficult>', re.IGNORECASE)
|
|
|
+ diff_tag = pattern.findall(str(ET.tostringlist(obj)))
|
|
|
+ if len(diff_tag) == 0:
|
|
|
+ _difficult = 0
|
|
|
+ else:
|
|
|
+ diff_tag = diff_tag[0][1:-1]
|
|
|
+ try:
|
|
|
+ _difficult = int(obj.find(diff_tag).text)
|
|
|
+ except Exception:
|
|
|
+ _difficult = 0
|
|
|
+ pattern = re.compile('<bndbox>', re.IGNORECASE)
|
|
|
+ box_tag = pattern.findall(str(ET.tostringlist(obj)))
|
|
|
+ if len(box_tag) == 0:
|
|
|
+ continue
|
|
|
+ box_tag = box_tag[0][1:-1]
|
|
|
+ box_element = obj.find(box_tag)
|
|
|
+ pattern = re.compile('<xmin>', re.IGNORECASE)
|
|
|
+ xmin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1:
|
|
|
+ -1]
|
|
|
+ x1 = float(box_element.find(xmin_tag).text)
|
|
|
+ pattern = re.compile('<ymin>', re.IGNORECASE)
|
|
|
+ ymin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1:
|
|
|
+ -1]
|
|
|
+ y1 = float(box_element.find(ymin_tag).text)
|
|
|
+ pattern = re.compile('<xmax>', re.IGNORECASE)
|
|
|
+ xmax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1:
|
|
|
+ -1]
|
|
|
+ x2 = float(box_element.find(xmax_tag).text)
|
|
|
+ pattern = re.compile('<ymax>', re.IGNORECASE)
|
|
|
+ ymax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1:
|
|
|
+ -1]
|
|
|
+ y2 = float(box_element.find(ymax_tag).text)
|
|
|
+ x1 = max(0, x1)
|
|
|
+ y1 = max(0, y1)
|
|
|
+ if im_w > 0.5 and im_h > 0.5:
|
|
|
+ x2 = min(im_w - 1, x2)
|
|
|
+ y2 = min(im_h - 1, y2)
|
|
|
+
|
|
|
+ if not (x2 >= x1 and y2 >= y1):
|
|
|
+ continue
|
|
|
+
|
|
|
+ gt_bbox[i, :] = [x1, y1, x2, y2]
|
|
|
+ gt_class[i, 0] = cname2cid[cname]
|
|
|
+ gt_score[i, 0] = 1.
|
|
|
+ is_crowd[i, 0] = 0
|
|
|
+ difficult[i, 0] = _difficult
|
|
|
+ i += 1
|
|
|
+
|
|
|
+ gt_bbox = gt_bbox[:i, :]
|
|
|
+ gt_class = gt_class[:i, :]
|
|
|
+ gt_score = gt_score[:i, :]
|
|
|
+ is_crowd = is_crowd[:i, :]
|
|
|
+ difficult = difficult[:i, :]
|
|
|
+
|
|
|
+ im_info = {
|
|
|
+ 'im_id': im_id,
|
|
|
+ 'image_shape': np.array(
|
|
|
+ [im_h, im_w], dtype=np.int32)
|
|
|
+ }
|
|
|
+ label_info = {
|
|
|
+ 'is_crowd': is_crowd,
|
|
|
+ 'gt_class': gt_class,
|
|
|
+ 'gt_bbox': gt_bbox,
|
|
|
+ 'gt_score': gt_score,
|
|
|
+ 'difficult': difficult
|
|
|
+ }
|
|
|
+
|
|
|
+ self.ct += 1
|
|
|
+ return {'image': im_path, ** im_info, ** label_info}
|
|
|
+
|
|
|
+ def _parse_coco_files(self, im_dir, ann_path):
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+
|
|
|
+ coco = COCO(ann_path)
|
|
|
+ img_ids = coco.getImgIds()
|
|
|
+ img_ids.sort()
|
|
|
+
|
|
|
+ samples = []
|
|
|
+ for img_id in img_ids:
|
|
|
+ img_anno = coco.loadImgs([img_id])[0]
|
|
|
+ im_fname = img_anno['file_name']
|
|
|
+ im_w = float(img_anno['width'])
|
|
|
+ im_h = float(img_anno['height'])
|
|
|
+
|
|
|
+ im_path = osp.join(im_dir, im_fname) if im_dir else im_fname
|
|
|
+
|
|
|
+ im_info = {
|
|
|
+ 'image': im_path,
|
|
|
+ 'im_id': np.array([img_id]),
|
|
|
+ 'image_shape': np.array(
|
|
|
+ [im_h, im_w], dtype=np.int32)
|
|
|
+ }
|
|
|
+
|
|
|
+ ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
|
|
|
+ instances = coco.loadAnns(ins_anno_ids)
|
|
|
+
|
|
|
+ is_crowds = []
|
|
|
+ gt_classes = []
|
|
|
+ gt_bboxs = []
|
|
|
+ gt_scores = []
|
|
|
+ difficults = []
|
|
|
+
|
|
|
+ for inst in instances:
|
|
|
+ # Check gt bbox
|
|
|
+ if inst.get('ignore', False):
|
|
|
+ continue
|
|
|
+ if 'bbox' not in inst.keys():
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ if not any(np.array(inst['bbox'])):
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Read box
|
|
|
+ x1, y1, box_w, box_h = inst['bbox']
|
|
|
+ x2 = x1 + box_w
|
|
|
+ y2 = y1 + box_h
|
|
|
+ eps = 1e-5
|
|
|
+ if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
|
|
|
+ inst['clean_bbox'] = [
|
|
|
+ round(float(x), 3) for x in [x1, y1, x2, y2]
|
|
|
+ ]
|
|
|
+
|
|
|
+ is_crowds.append([inst['iscrowd']])
|
|
|
+ gt_classes.append([inst['category_id']])
|
|
|
+ gt_bboxs.append(inst['clean_bbox'])
|
|
|
+ gt_scores.append([1.])
|
|
|
+ difficults.append([0])
|
|
|
+
|
|
|
+ label_info = {
|
|
|
+ 'is_crowd': np.array(is_crowds),
|
|
|
+ 'gt_class': np.array(gt_classes),
|
|
|
+ 'gt_bbox': np.array(gt_bboxs).astype(np.float32),
|
|
|
+ 'gt_score': np.array(gt_scores).astype(np.float32),
|
|
|
+ 'difficult': np.array(difficults),
|
|
|
+ }
|
|
|
+
|
|
|
+ samples.append({ ** im_info, ** label_info})
|
|
|
+
|
|
|
+ return samples
|
|
|
+
|
|
|
+
|
|
|
+def build_input_from_file(file_list, prefix='', task='auto', label_list=None):
|
|
|
+ """
|
|
|
+ Construct a list of dictionaries from file. Each dict in the list can be used as the input to `paddlers.transforms.Transform` objects.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ file_list (str): Path of file_list.
|
|
|
+ prefix (str, optional): A nonempty `prefix` specifies the directory that stores the images and annotation files. Default: ''.
|
|
|
+ task (str, optional): Supported values are 'seg', 'det', 'cd', 'clas', and 'auto'. When `task` is set to 'auto', automatically determine the task based on the input.
|
|
|
+ Default: 'auto'.
|
|
|
+ label_list (str | None, optional): Path of label_list. Default: None.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ list: List of samples.
|
|
|
+ """
|
|
|
+
|
|
|
+ def _determine_task(parts):
|
|
|
+ if len(parts) in (3, 5):
|
|
|
+ task = 'cd'
|
|
|
+ elif len(parts) == 2:
|
|
|
+ if parts[1].isdigit():
|
|
|
+ task = 'clas'
|
|
|
+ elif is_pic(osp.join(prefix, parts[1])):
|
|
|
+ task = 'seg'
|
|
|
+ else:
|
|
|
+ task = 'det'
|
|
|
+ else:
|
|
|
+ raise RuntimeError(
|
|
|
+ "Cannot automatically determine the task type. Please specify `task` manually."
|
|
|
+ )
|
|
|
+ return task
|
|
|
+
|
|
|
+ if task not in ('seg', 'det', 'cd', 'clas', 'auto'):
|
|
|
+ raise ValueError("Invalid value of `task`")
|
|
|
+
|
|
|
+ samples = []
|
|
|
+ ctor = None
|
|
|
+ with open(file_list, 'r') as f:
|
|
|
+ for line in f:
|
|
|
+ line = line.strip()
|
|
|
+ parts = line.split()
|
|
|
+ if task == 'auto':
|
|
|
+ task = _determine_task(parts)
|
|
|
+ if ctor is None:
|
|
|
+ # Select and build sample constructor
|
|
|
+ ctor_class = globals()['Constr' + task.capitalize() + 'Sample']
|
|
|
+ ctor = ctor_class(prefix, label_list)
|
|
|
+ sample = ctor(*parts)
|
|
|
+ if isinstance(sample, list):
|
|
|
+ samples.extend(sample)
|
|
|
+ else:
|
|
|
+ samples.append(sample)
|
|
|
+
|
|
|
+ return samples
|