|
@@ -0,0 +1,257 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import inspect
|
|
|
+import copy
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+import paddlers.transforms as T
|
|
|
+from testing_utils import CpuCommonTest
|
|
|
+from data import build_input_from_file
|
|
|
+
|
|
|
+WHITE_LIST = []
|
|
|
+
|
|
|
+
|
|
|
+def _add_op_tests(cls):
|
|
|
+ """
|
|
|
+ Automatically patch testing functions for transform operators.
|
|
|
+ """
|
|
|
+
|
|
|
+ for op_name in T.operators.__all__:
|
|
|
+ op_class = getattr(T.operators, op_name)
|
|
|
+ if isinstance(op_class, type) and issubclass(op_class,
|
|
|
+ T.operators.Transform):
|
|
|
+ if op_class is T.DecodeImg or op_class in WHITE_LIST or op_name in WHITE_LIST:
|
|
|
+ continue
|
|
|
+ attr_name = 'test_' + op_name
|
|
|
+ if hasattr(cls, attr_name):
|
|
|
+ continue
|
|
|
+ # If the operator cannot be initialized with default parameters, skip it
|
|
|
+ for key, param in inspect.signature(
|
|
|
+ op_class.__init__).parameters.items():
|
|
|
+ if key == 'self':
|
|
|
+ continue
|
|
|
+ if param.default is param.empty:
|
|
|
+ break
|
|
|
+ else:
|
|
|
+ filter_ = OP2FILTER.get(op_name, None)
|
|
|
+ setattr(
|
|
|
+ cls, attr_name, make_test_func(
|
|
|
+ op_class, filter_=filter_))
|
|
|
+ return cls
|
|
|
+
|
|
|
+
|
|
|
+def make_test_func(op_class,
|
|
|
+ *args,
|
|
|
+ in_hook=None,
|
|
|
+ out_hook=None,
|
|
|
+ filter_=None,
|
|
|
+ **kwargs):
|
|
|
+ def _test_func(self):
|
|
|
+ op = op_class(*args, **kwargs)
|
|
|
+ decoder = T.DecodeImg()
|
|
|
+ inputs = map(decoder, copy.deepcopy(self.inputs))
|
|
|
+ for i, input_ in enumerate(inputs):
|
|
|
+ if filter_ is not None:
|
|
|
+ input_ = filter_(input_)
|
|
|
+ with self.subTest(i=i):
|
|
|
+ for sample in input_:
|
|
|
+ if in_hook:
|
|
|
+ sample = in_hook(sample)
|
|
|
+ sample = op(sample)
|
|
|
+ if out_hook:
|
|
|
+ sample = out_hook(sample)
|
|
|
+
|
|
|
+ return _test_func
|
|
|
+
|
|
|
+
|
|
|
+class _InputFilter(object):
|
|
|
+ def __init__(self, conds):
|
|
|
+ self.conds = conds
|
|
|
+
|
|
|
+ def __call__(self, samples):
|
|
|
+ for sample in samples:
|
|
|
+ for cond in self.conds:
|
|
|
+ if cond(sample):
|
|
|
+ yield sample
|
|
|
+
|
|
|
+ def __or__(self, filter):
|
|
|
+ return _InputFilter(self.conds + filter.conds)
|
|
|
+
|
|
|
+ def __and__(self, filter):
|
|
|
+ return _InputFilter(
|
|
|
+ [cond for cond in self.conds if cond in filter.conds])
|
|
|
+
|
|
|
+ def get_sample(self, input):
|
|
|
+ return input[0]
|
|
|
+
|
|
|
+
|
|
|
+def _is_optical(sample):
|
|
|
+ return sample['image'].shape[2] == 3
|
|
|
+
|
|
|
+
|
|
|
+def _is_sar(sample):
|
|
|
+ return sample['image'].shape[2] == 1
|
|
|
+
|
|
|
+
|
|
|
+def _is_multispectral(sample):
|
|
|
+ return sample['image'].shape[2] > 3
|
|
|
+
|
|
|
+
|
|
|
+def _is_mt(sample):
|
|
|
+ return 'image2' in sample
|
|
|
+
|
|
|
+
|
|
|
+_filter_only_optical = _InputFilter([_is_optical])
|
|
|
+_filter_only_sar = _InputFilter([_is_sar])
|
|
|
+_filter_only_multispectral = _InputFilter([_is_multispectral])
|
|
|
+_filter_no_multispectral = _filter_only_optical | _filter_only_sar
|
|
|
+_filter_no_sar = _filter_only_optical | _filter_only_multispectral
|
|
|
+_filter_no_optical = _filter_only_sar | _filter_only_multispectral
|
|
|
+_filter_only_mt = _InputFilter([_is_mt])
|
|
|
+
|
|
|
+OP2FILTER = {
|
|
|
+ 'RandomSwap': _filter_only_mt,
|
|
|
+ 'SelectBand': _filter_no_sar,
|
|
|
+ 'Dehaze': _filter_only_optical,
|
|
|
+ 'Normalize': _filter_only_optical,
|
|
|
+ 'RandomDistort': _filter_only_optical
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+@_add_op_tests
|
|
|
+class TestTransform(CpuCommonTest):
|
|
|
+ def setUp(self):
|
|
|
+ self.inputs = [
|
|
|
+ build_input_from_file(
|
|
|
+ 'data/ssst/test_optical_clas.txt',
|
|
|
+ prefix='./data/ssst'), build_input_from_file(
|
|
|
+ 'data/ssst/test_sar_clas.txt',
|
|
|
+ prefix='./data/ssst'), build_input_from_file(
|
|
|
+ 'data/ssst/test_multispectral_clas.txt',
|
|
|
+ prefix='./data/ssst'), build_input_from_file(
|
|
|
+ 'data/ssst/test_optical_seg.txt',
|
|
|
+ prefix='./data/ssst'), build_input_from_file(
|
|
|
+ 'data/ssst/test_sar_seg.txt',
|
|
|
+ prefix='./data/ssst'), build_input_from_file(
|
|
|
+ 'data/ssst/test_multispectral_seg.txt',
|
|
|
+ prefix='./data/ssst'),
|
|
|
+ build_input_from_file(
|
|
|
+ 'data/ssst/test_optical_det.txt',
|
|
|
+ prefix='./data/ssst',
|
|
|
+ label_list='data/ssst/labels_det.txt'), build_input_from_file(
|
|
|
+ 'data/ssst/test_sar_det.txt',
|
|
|
+ prefix='./data/ssst',
|
|
|
+ label_list='data/ssst/labels_det.txt'),
|
|
|
+ build_input_from_file(
|
|
|
+ 'data/ssst/test_multispectral_det.txt',
|
|
|
+ prefix='./data/ssst',
|
|
|
+ label_list='data/ssst/labels_det.txt'), build_input_from_file(
|
|
|
+ 'data/ssmt/test_mixed_binary.txt',
|
|
|
+ prefix='./data/ssmt'), build_input_from_file(
|
|
|
+ 'data/ssmt/test_mixed_multiclass.txt',
|
|
|
+ prefix='./data/ssmt'), build_input_from_file(
|
|
|
+ 'data/ssmt/test_mixed_multitask.txt',
|
|
|
+ prefix='./data/ssmt')
|
|
|
+ ]
|
|
|
+
|
|
|
+ def test_DecodeImg(self):
|
|
|
+ decoder = T.DecodeImg(to_rgb=True)
|
|
|
+ for i, input in enumerate(self.inputs):
|
|
|
+ with self.subTest(i=i):
|
|
|
+ for sample in input:
|
|
|
+ sample = decoder(sample)
|
|
|
+ # Check type
|
|
|
+ self.assertIsInstance(sample['image'], np.ndarray)
|
|
|
+ if 'mask' in sample:
|
|
|
+ self.assertIsInstance(sample['mask'], np.ndarray)
|
|
|
+ if 'aux_masks' in sample:
|
|
|
+ for aux_mask in sample['aux_masks']:
|
|
|
+ self.assertIsInstance(aux_mask, np.ndarray)
|
|
|
+ # TODO: Check dtype
|
|
|
+
|
|
|
+ def test_Resize(self):
|
|
|
+ TARGET_SIZE = (128, 128)
|
|
|
+
|
|
|
+ def _in_hook(sample):
|
|
|
+ self.image_shape = sample['image'].shape
|
|
|
+ if 'mask' in sample:
|
|
|
+ self.mask_shape = sample['mask'].shape
|
|
|
+ self.mask_values = set(sample['mask'].ravel())
|
|
|
+ if 'aux_masks' in sample:
|
|
|
+ self.aux_mask_shapes = [
|
|
|
+ aux_mask.shape for aux_mask in sample['aux_masks']
|
|
|
+ ]
|
|
|
+ self.aux_mask_values = [
|
|
|
+ set(aux_mask.ravel()) for aux_mask in sample['aux_masks']
|
|
|
+ ]
|
|
|
+ return sample
|
|
|
+
|
|
|
+ def _out_hook_not_keep_ratio(sample):
|
|
|
+ self.check_output_equal(sample['image'].shape[:2], TARGET_SIZE)
|
|
|
+ if 'image2' in sample:
|
|
|
+ self.check_output_equal(sample['image2'].shape[:2], TARGET_SIZE)
|
|
|
+ if 'mask' in sample:
|
|
|
+ self.check_output_equal(sample['mask'].shape[:2], TARGET_SIZE)
|
|
|
+ self.assertLessEqual(
|
|
|
+ set(sample['mask'].ravel()), self.mask_values)
|
|
|
+ if 'aux_masks' in sample:
|
|
|
+ for aux_mask in sample['aux_masks']:
|
|
|
+ self.check_output_equal(aux_mask.shape[:2], TARGET_SIZE)
|
|
|
+ for aux_mask, amv in zip(sample['aux_masks'],
|
|
|
+ self.aux_mask_values):
|
|
|
+ self.assertLessEqual(set(aux_mask.ravel()), amv)
|
|
|
+ # TODO: Test gt_bbox and gt_poly
|
|
|
+ return sample
|
|
|
+
|
|
|
+ def _out_hook_keep_ratio(sample):
|
|
|
+ def __check_ratio(shape1, shape2):
|
|
|
+ self.check_output_equal(shape1[0] / shape1[1],
|
|
|
+ shape2[0] / shape2[1])
|
|
|
+
|
|
|
+ __check_ratio(sample['image'].shape, self.image_shape)
|
|
|
+ if 'image2' in sample:
|
|
|
+ __check_ratio(sample['image2'].shape, self.image_shape)
|
|
|
+ if 'mask' in sample:
|
|
|
+ __check_ratio(sample['mask'].shape, self.mask_shape)
|
|
|
+ if 'aux_masks' in sample:
|
|
|
+ for aux_mask, ori_aux_mask_shape in zip(sample['aux_masks'],
|
|
|
+ self.aux_mask_shapes):
|
|
|
+ __check_ratio(aux_mask.shape, ori_aux_mask_shape)
|
|
|
+ # TODO: Test gt_bbox and gt_poly
|
|
|
+ return sample
|
|
|
+
|
|
|
+ test_func_not_keep_ratio = make_test_func(
|
|
|
+ T.Resize,
|
|
|
+ in_hook=_in_hook,
|
|
|
+ out_hook=_out_hook_not_keep_ratio,
|
|
|
+ target_size=TARGET_SIZE,
|
|
|
+ keep_ratio=False)
|
|
|
+ test_func_not_keep_ratio(self)
|
|
|
+ test_func_keep_ratio = make_test_func(
|
|
|
+ T.Resize,
|
|
|
+ in_hook=_in_hook,
|
|
|
+ out_hook=_out_hook_keep_ratio,
|
|
|
+ target_size=TARGET_SIZE,
|
|
|
+ keep_ratio=True)
|
|
|
+ test_func_keep_ratio(self)
|
|
|
+
|
|
|
+
|
|
|
+class TestCompose(CpuCommonTest):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class TestArrange(CpuCommonTest):
|
|
|
+ pass
|