|
@@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
|
|
train_transforms = T.Compose([
|
|
train_transforms = T.Compose([
|
|
# 读取影像
|
|
# 读取影像
|
|
T.DecodeImg(),
|
|
T.DecodeImg(),
|
|
- # 对输入影像施加随机色彩扰动
|
|
|
|
- T.RandomDistort(),
|
|
|
|
- # 在影像边界进行随机padding
|
|
|
|
- T.RandomExpand(),
|
|
|
|
# 随机裁剪,裁块大小在一定范围内变动
|
|
# 随机裁剪,裁块大小在一定范围内变动
|
|
T.RandomCrop(),
|
|
T.RandomCrop(),
|
|
# 随机水平翻转
|
|
# 随机水平翻转
|
|
T.RandomHorizontalFlip(),
|
|
T.RandomHorizontalFlip(),
|
|
# 对batch进行随机缩放,随机选择插值方式
|
|
# 对batch进行随机缩放,随机选择插值方式
|
|
T.BatchRandomResize(
|
|
T.BatchRandomResize(
|
|
- target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
|
|
|
|
- interp='RANDOM'),
|
|
|
|
|
|
+ target_sizes=[512, 544, 576, 608], interp='RANDOM'),
|
|
# 影像归一化
|
|
# 影像归一化
|
|
T.Normalize(
|
|
T.Normalize(
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
@@ -92,7 +87,7 @@ model.train(
|
|
# 指定预训练权重
|
|
# 指定预训练权重
|
|
pretrain_weights='COCO',
|
|
pretrain_weights='COCO',
|
|
# 初始学习率大小
|
|
# 初始学习率大小
|
|
- learning_rate=0.0005,
|
|
|
|
|
|
+ learning_rate=0.0001,
|
|
# 学习率预热(learning rate warm-up)步数与初始值
|
|
# 学习率预热(learning rate warm-up)步数与初始值
|
|
warmup_steps=0,
|
|
warmup_steps=0,
|
|
warmup_start_lr=0.0,
|
|
warmup_start_lr=0.0,
|