|
@@ -539,7 +539,9 @@ class BaseChangeDetector(BaseModel):
|
|
|
if isinstance(sample['image_t1'], str) or \
|
|
|
isinstance(sample['image_t2'], str):
|
|
|
sample = ImgDecoder(to_rgb=False)(sample)
|
|
|
- ori_shape = sample['image_t1'].shape[:2]
|
|
|
+ ori_shape = sample['image'].shape[:2]
|
|
|
+ else:
|
|
|
+ ori_shape = im1.shape[:2]
|
|
|
im1, im2 = transforms(sample)[:2]
|
|
|
batch_im1.append(im1)
|
|
|
batch_im2.append(im2)
|
|
@@ -828,7 +830,9 @@ class DSIFN(BaseChangeDetector):
|
|
|
'coef': [1.0] * 5
|
|
|
}
|
|
|
else:
|
|
|
- raise ValueError(f"Currently `use_mixed_loss` must be set to False for {self.__class__}")
|
|
|
+ raise ValueError(
|
|
|
+ f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
+ )
|
|
|
|
|
|
|
|
|
class DSAMNet(BaseChangeDetector):
|
|
@@ -860,7 +864,9 @@ class DSAMNet(BaseChangeDetector):
|
|
|
'coef': [1.0, 0.05, 0.05]
|
|
|
}
|
|
|
else:
|
|
|
- raise ValueError(f"Currently `use_mixed_loss` must be set to False for {self.__class__}")
|
|
|
+ raise ValueError(
|
|
|
+ f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
+ )
|
|
|
|
|
|
|
|
|
class ChangeStar(BaseChangeDetector):
|
|
@@ -892,4 +898,6 @@ class ChangeStar(BaseChangeDetector):
|
|
|
'coef': [1.0] * 4
|
|
|
}
|
|
|
else:
|
|
|
- raise ValueError(f"Currently `use_mixed_loss` must be set to False for {self.__class__}")
|
|
|
+ raise ValueError(
|
|
|
+ f"Currently `use_mixed_loss` must be set to False for {self.__class__}"
|
|
|
+ )
|