浏览代码

Update set loss docs

Bobholamovic 2 年之前
父节点
当前提交
465a83629d
共有 2 个文件被更改,包括 7 次插入3 次删除
  1. 5 1
      docs/apis/train.md
  2. 2 2
      docs/dev/dev_guide.md

+ 5 - 1
docs/apis/train.md

@@ -10,23 +10,27 @@
 
 
 - 一般支持设置`num_classes`、`use_mixed_loss`以及`in_channels`参数,分别表示模型输出类别数、是否使用预置的混合损失以及输入通道数。部分子类如`DSIFN`暂不支持对`in_channels`参数的设置。
 - 一般支持设置`num_classes`、`use_mixed_loss`以及`in_channels`参数,分别表示模型输出类别数、是否使用预置的混合损失以及输入通道数。部分子类如`DSIFN`暂不支持对`in_channels`参数的设置。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
+- 可通过`losses`参数指定模型训练时使用的损失函数。`losses`需为一个字典,其中`'types'`键和`'coef'`键对应的值为两个等长的列表,分别表示损失函数对象(一个可调用对象)和损失函数的权重。例如:`losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`在训练过程中将等价于计算如下损失函数:`1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`,其中`logits`和`labels`分别是模型输出和真值标签。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/cd)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py)。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/cd)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py)。
 
 
 ### 初始化`BaseClassifier`子类对象
 ### 初始化`BaseClassifier`子类对象
 
 
 - 一般支持设置`num_classes`和`use_mixed_loss`参数,分别表示模型输出类别数以及是否使用预置的混合损失。
 - 一般支持设置`num_classes`和`use_mixed_loss`参数,分别表示模型输出类别数以及是否使用预置的混合损失。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
+- 可通过`losses`参数指定模型训练时使用的损失函数,传入实参需为`paddlers.models.clas_losses.CombinedLoss`类型对象。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/clas)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py)。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/clas)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py)。
 
 
-### 初始化`Baseetector`子类对象
+### 初始化`BaseDetector`子类对象
 
 
 - 一般支持设置`num_classes`和`backbone`参数,分别表示模型输出类别数以及所用的骨干网络类型。相比其它任务,目标检测任务的训练器支持设置的初始化参数较多,囊括网络结构、损失函数、后处理策略等方面。
 - 一般支持设置`num_classes`和`backbone`参数,分别表示模型输出类别数以及所用的骨干网络类型。相比其它任务,目标检测任务的训练器支持设置的初始化参数较多,囊括网络结构、损失函数、后处理策略等方面。
+- 与分割、分类、变化检测等任务不同,检测任务不支持通过`losses`参数指定损失函数。不过对于部分训练器如`PPYOLO`,可通过`use_iou_loss`等参数定制损失函数。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/det)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/object_detector.py)。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/det)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/object_detector.py)。
 
 
 ### 初始化`BaseSegmenter`子类对象
 ### 初始化`BaseSegmenter`子类对象
 
 
 - 一般支持设置`input_channel`、`num_classes`以及`use_mixed_loss`参数,分别表示输入通道数、输出类别数以及是否使用预置的混合损失。部分模型如`FarSeg`暂不支持对`input_channel`参数的设置。
 - 一般支持设置`input_channel`、`num_classes`以及`use_mixed_loss`参数,分别表示输入通道数、输出类别数以及是否使用预置的混合损失。部分模型如`FarSeg`暂不支持对`input_channel`参数的设置。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
+- 可通过`losses`参数指定模型训练时使用的损失函数。`losses`需为一个字典,其中`'types'`键和`'coef'`键对应的值为两个等长的列表,分别表示损失函数对象(一个可调用对象)和损失函数的权重。例如:`losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`在训练过程中将等价于计算如下损失函数:`1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`,其中`logits`和`labels`分别是模型输出和真值标签。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/seg)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmentor.py)。
 - 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/seg)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmentor.py)。
 
 
 ## `train()`
 ## `train()`

+ 2 - 2
docs/dev/dev_guide.md

@@ -64,8 +64,8 @@ Args:
 2. 在`paddlers/tasks`目录中找到任务对应的训练器定义文件(例如变化检测任务对应`paddlers/tasks/change_detector.py`)。
 2. 在`paddlers/tasks`目录中找到任务对应的训练器定义文件(例如变化检测任务对应`paddlers/tasks/change_detector.py`)。
 
 
 3. 在文件尾部追加新的训练器定义。训练器需要继承自相关的基类(例如`BaseChangeDetector`),重写`__init__()`方法,并根据需要重写其他方法。对训练器`__init__()`方法编写的要求如下:
 3. 在文件尾部追加新的训练器定义。训练器需要继承自相关的基类(例如`BaseChangeDetector`),重写`__init__()`方法,并根据需要重写其他方法。对训练器`__init__()`方法编写的要求如下:
-    - 对于变化检测、场景分类、目标检测、图像分割任务,`__init__()`方法的第1个输入参数是`num_classes`,表示模型输出类别数;对于变化检测、场景分类、图像分割任务,第2个输入参数是`use_mixed_loss`,表示用户是否使用默认定义的混合损失。
-    - `__init__()`的所有输入参数都必须有默认值,且在**取默认值的情况下,模型接收3通道RGB输入**。
+    - 对于变化检测、场景分类、目标检测、图像分割任务,`__init__()`方法的第1个输入参数是`num_classes`,表示模型输出类别数;对于变化检测、场景分类、图像分割任务,第2个输入参数是`use_mixed_loss`,表示用户是否使用默认定义的混合损失;对于变化检测、场景分类、图像分割任务,第3个输入参数是`losses`,表示训练过程中使用的损失函数
+    - `__init__()`的所有输入参数都必须有默认值,且在**取默认值的情况下,模型接收3通道RGB输入**、不使用mixed loss、使用`default_loss`定义的损失函数
     - 在`__init__()`中需要更新`params`字典,该字典中的键值对将被用作模型构造时的输入参数。
     - 在`__init__()`中需要更新`params`字典,该字典中的键值对将被用作模型构造时的输入参数。
 
 
 4. 在全局变量`__all__`中添加新增训练器的类名。
 4. 在全局变量`__all__`中添加新增训练器的类名。