|
@@ -0,0 +1,95 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import paddle
|
|
|
+import paddle.nn as nn
|
|
|
+import paddle.nn.functional as F
|
|
|
+
|
|
|
+
|
|
|
+from .layers import make_norm, Conv3x3, CBAM
|
|
|
+from .stanet import Backbone, Decoder
|
|
|
+
|
|
|
+
|
|
|
+class DSAMNet(nn.Layer):
|
|
|
+ """
|
|
|
+ The DSAMNet implementation based on PaddlePaddle.
|
|
|
+
|
|
|
+ The original article refers to
|
|
|
+ Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing
|
|
|
+ Change Detection"
|
|
|
+ (https://ieeexplore.ieee.org/document/9467555)
|
|
|
+
|
|
|
+ Note that this implementation differs from the original work in two aspects:
|
|
|
+ 1. We do not use multiple dilation rates in layer 4 of the ResNet backbone.
|
|
|
+ 2. A classification head is used in place of the original metric learning-based head to stablize the training process.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ in_channels (int): The number of bands of the input images.
|
|
|
+ num_classes (int): The number of target classes.
|
|
|
+ ca_ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8.
|
|
|
+ sa_kernel (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7.
|
|
|
+ """
|
|
|
+ def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7):
|
|
|
+ super().__init__()
|
|
|
+
|
|
|
+ WIDTH = 64
|
|
|
+
|
|
|
+ self.backbone = Backbone(in_ch=in_channels, arch='resnet18', strides=(1,1,2,2,1))
|
|
|
+ self.decoder = Decoder(WIDTH)
|
|
|
+
|
|
|
+ self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
|
|
|
+ self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
|
|
|
+
|
|
|
+ self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1)
|
|
|
+ self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3)
|
|
|
+
|
|
|
+ self.conv_out = nn.Sequential(
|
|
|
+ Conv3x3(WIDTH, WIDTH, norm=True, act=True),
|
|
|
+ Conv3x3(WIDTH, num_classes)
|
|
|
+ )
|
|
|
+
|
|
|
+ self.init_weight()
|
|
|
+
|
|
|
+ def forward(self, t1, t2):
|
|
|
+ f1 = self.backbone(t1)
|
|
|
+ f2 = self.backbone(t2)
|
|
|
+
|
|
|
+ y1 = self.decoder(f1)
|
|
|
+ y2 = self.decoder(f2)
|
|
|
+
|
|
|
+ y1 = self.cbam1(y1)
|
|
|
+ y2 = self.cbam2(y2)
|
|
|
+
|
|
|
+ out = paddle.abs(y1-y2)
|
|
|
+ out = F.interpolate(out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True)
|
|
|
+ pred = self.conv_out(out)
|
|
|
+
|
|
|
+ ds2 = self.dsl2(paddle.abs(f1[0]-f2[0]))
|
|
|
+ ds3 = self.dsl3(paddle.abs(f1[1]-f2[1]))
|
|
|
+
|
|
|
+ return pred, ds2, ds3
|
|
|
+
|
|
|
+ def init_weight(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class DSLayer(nn.Sequential):
|
|
|
+ def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs):
|
|
|
+ super().__init__(
|
|
|
+ nn.Conv2DTranspose(in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs),
|
|
|
+ make_norm(itm_ch),
|
|
|
+ nn.ReLU(),
|
|
|
+ nn.Dropout2D(p=0.2),
|
|
|
+ nn.Conv2DTranspose(itm_ch, out_ch, kernel_size=3, padding=1)
|
|
|
+ )
|