|
@@ -1,520 +1,544 @@
|
|
|
-# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
-#
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
-# You may obtain a copy of the License at
|
|
|
-#
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-#
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
-# limitations under the License.
|
|
|
-
|
|
|
-import math
|
|
|
-import os.path as osp
|
|
|
-import numpy as np
|
|
|
-from collections import OrderedDict
|
|
|
-import paddle
|
|
|
-import paddle.nn.functional as F
|
|
|
-from paddle.static import InputSpec
|
|
|
-import paddlers.models.ppcls as paddleclas
|
|
|
-import paddlers
|
|
|
-from paddlers.transforms import arrange_transforms
|
|
|
-from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
-import paddlers.utils.logging as logging
|
|
|
-from .base import BaseModel
|
|
|
-from paddlers.models.ppcls.metric import build_metrics
|
|
|
-from paddlers.models.ppcls.loss import build_loss
|
|
|
-from paddlers.models.ppcls.data.postprocess import build_postprocess
|
|
|
-from paddlers.utils.checkpoint import cls_pretrain_weights_dict
|
|
|
-from paddlers.transforms import ImgDecoder, Resize
|
|
|
-
|
|
|
-__all__ = ["ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C"]
|
|
|
-
|
|
|
-
|
|
|
-class BaseClassifier(BaseModel):
|
|
|
- def __init__(self,
|
|
|
- model_name,
|
|
|
- num_classes=2,
|
|
|
- use_mixed_loss=False,
|
|
|
- **params):
|
|
|
- self.init_params = locals()
|
|
|
- if 'with_net' in self.init_params:
|
|
|
- del self.init_params['with_net']
|
|
|
- super(BaseClassifier, self).__init__('classifier')
|
|
|
- if not hasattr(paddleclas.arch.backbone, model_name):
|
|
|
- raise Exception("ERROR: There's no model named {}.".format(
|
|
|
- model_name))
|
|
|
- self.model_name = model_name
|
|
|
- self.num_classes = num_classes
|
|
|
- self.use_mixed_loss = use_mixed_loss
|
|
|
- self.metrics = None
|
|
|
- self.losses = None
|
|
|
- self.labels = None
|
|
|
- self._postprocess = None
|
|
|
- if params.get('with_net', True):
|
|
|
- params.pop('with_net', None)
|
|
|
- self.net = self.build_net(**params)
|
|
|
- self.find_unused_parameters = True
|
|
|
-
|
|
|
- def build_net(self, **params):
|
|
|
- with paddle.utils.unique_name.guard():
|
|
|
- net = paddleclas.arch.backbone.__dict__[self.model_name](
|
|
|
- class_num=self.num_classes, **params)
|
|
|
- return net
|
|
|
-
|
|
|
- def _fix_transforms_shape(self, image_shape):
|
|
|
- if hasattr(self, 'test_transforms'):
|
|
|
- if self.test_transforms is not None:
|
|
|
- has_resize_op = False
|
|
|
- resize_op_idx = -1
|
|
|
- normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
- for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
- name = op.__class__.__name__
|
|
|
- if name == 'Normalize':
|
|
|
- normalize_op_idx = idx
|
|
|
- if 'Resize' in name:
|
|
|
- has_resize_op = True
|
|
|
- resize_op_idx = idx
|
|
|
-
|
|
|
- if not has_resize_op:
|
|
|
- self.test_transforms.transforms.insert(
|
|
|
- normalize_op_idx, Resize(target_size=image_shape))
|
|
|
- else:
|
|
|
- self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
- target_size=image_shape)
|
|
|
-
|
|
|
- def _get_test_inputs(self, image_shape):
|
|
|
- if image_shape is not None:
|
|
|
- if len(image_shape) == 2:
|
|
|
- image_shape = [1, 3] + image_shape
|
|
|
- self._fix_transforms_shape(image_shape[-2:])
|
|
|
- else:
|
|
|
- image_shape = [None, 3, -1, -1]
|
|
|
- self.fixed_input_shape = image_shape
|
|
|
- input_spec = [
|
|
|
- InputSpec(
|
|
|
- shape=image_shape, name='image', dtype='float32')
|
|
|
- ]
|
|
|
- return input_spec
|
|
|
-
|
|
|
- def run(self, net, inputs, mode):
|
|
|
- net_out = net(inputs[0])
|
|
|
- label = paddle.to_tensor(inputs[1], dtype="int64")
|
|
|
- outputs = OrderedDict()
|
|
|
- if mode == 'test':
|
|
|
- result = self._postprocess(net_out)
|
|
|
- outputs = result[0]
|
|
|
-
|
|
|
- if mode == 'eval':
|
|
|
- # print(self._postprocess(net_out)[0]) # for test
|
|
|
- label = paddle.unsqueeze(label, axis=-1)
|
|
|
- metric_dict = self.metrics(net_out, label)
|
|
|
- outputs['top1'] = metric_dict["top1"]
|
|
|
- outputs['top5'] = metric_dict["top5"]
|
|
|
-
|
|
|
- if mode == 'train':
|
|
|
- loss_list = self.losses(net_out, label)
|
|
|
- outputs['loss'] = loss_list['loss']
|
|
|
- return outputs
|
|
|
-
|
|
|
- def default_metric(self):
|
|
|
- default_config = [{"TopkAcc": {"topk": [1, 5]}}]
|
|
|
- return build_metrics(default_config)
|
|
|
-
|
|
|
- def default_loss(self):
|
|
|
- # TODO: use mixed loss and other loss
|
|
|
- default_config = [{"CELoss": {"weight": 1.0}}]
|
|
|
- return build_loss(default_config)
|
|
|
-
|
|
|
- def default_optimizer(self,
|
|
|
- parameters,
|
|
|
- learning_rate,
|
|
|
- num_epochs,
|
|
|
- num_steps_each_epoch,
|
|
|
- last_epoch=-1,
|
|
|
- L2_coeff=0.00007):
|
|
|
- decay_step = num_epochs * num_steps_each_epoch
|
|
|
- lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
|
|
|
- learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
|
|
|
- optimizer = paddle.optimizer.Momentum(
|
|
|
- learning_rate=lr_scheduler,
|
|
|
- parameters=parameters,
|
|
|
- momentum=0.9,
|
|
|
- weight_decay=paddle.regularizer.L2Decay(L2_coeff))
|
|
|
- return optimizer
|
|
|
-
|
|
|
- def default_postprocess(self, class_id_map_file):
|
|
|
- default_config = {
|
|
|
- "name": "Topk",
|
|
|
- "topk": 1,
|
|
|
- "class_id_map_file": class_id_map_file
|
|
|
- }
|
|
|
- return build_postprocess(default_config)
|
|
|
-
|
|
|
- def train(self,
|
|
|
- num_epochs,
|
|
|
- train_dataset,
|
|
|
- train_batch_size=2,
|
|
|
- eval_dataset=None,
|
|
|
- optimizer=None,
|
|
|
- save_interval_epochs=1,
|
|
|
- log_interval_steps=2,
|
|
|
- save_dir='output',
|
|
|
- pretrain_weights='IMAGENET',
|
|
|
- learning_rate=0.1,
|
|
|
- lr_decay_power=0.9,
|
|
|
- early_stop=False,
|
|
|
- early_stop_patience=5,
|
|
|
- use_vdl=True,
|
|
|
- resume_checkpoint=None):
|
|
|
- """
|
|
|
- Train the model.
|
|
|
- Args:
|
|
|
- num_epochs(int): The number of epochs.
|
|
|
- train_dataset(paddlers.dataset): Training dataset.
|
|
|
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
- eval_dataset(paddlers.dataset, optional):
|
|
|
- Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
- optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
- Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
- pretrain_weights(str or None, optional):
|
|
|
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
|
|
|
- learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
- lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
|
|
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
|
|
- `pretrain_weights` can be set simultaneously. Defaults to None.
|
|
|
-
|
|
|
- """
|
|
|
- if self.status == 'Infer':
|
|
|
- logging.error(
|
|
|
- "Exported inference model does not support training.",
|
|
|
- exit=True)
|
|
|
- if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
- logging.error(
|
|
|
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
|
|
|
- exit=True)
|
|
|
- self.labels = train_dataset.labels
|
|
|
- if self.losses is None:
|
|
|
- self.losses = self.default_loss()
|
|
|
- self.metrics = self.default_metric()
|
|
|
- self._postprocess = self.default_postprocess(train_dataset.label_list)
|
|
|
- # print(self._postprocess.class_id_map)
|
|
|
-
|
|
|
- if optimizer is None:
|
|
|
- num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
- self.optimizer = self.default_optimizer(
|
|
|
- self.net.parameters(), learning_rate, num_epochs,
|
|
|
- num_steps_each_epoch, lr_decay_power)
|
|
|
- else:
|
|
|
- self.optimizer = optimizer
|
|
|
-
|
|
|
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
|
|
- if pretrain_weights not in cls_pretrain_weights_dict[
|
|
|
- self.model_name]:
|
|
|
- logging.warning(
|
|
|
- "Path of pretrain_weights('{}') does not exist!".format(
|
|
|
- pretrain_weights))
|
|
|
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
|
|
- "If don't want to use pretrain weights, "
|
|
|
- "set pretrain_weights to be None.".format(
|
|
|
- cls_pretrain_weights_dict[self.model_name][
|
|
|
- 0]))
|
|
|
- pretrain_weights = cls_pretrain_weights_dict[self.model_name][0]
|
|
|
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
|
|
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
- logging.error(
|
|
|
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
|
|
|
- exit=True)
|
|
|
- pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
- is_backbone_weights = False # pretrain_weights == 'IMAGENET' # TODO: this is backbone
|
|
|
- self.net_initialize(
|
|
|
- pretrain_weights=pretrain_weights,
|
|
|
- save_dir=pretrained_dir,
|
|
|
- resume_checkpoint=resume_checkpoint,
|
|
|
- is_backbone_weights=is_backbone_weights)
|
|
|
-
|
|
|
- self.train_loop(
|
|
|
- num_epochs=num_epochs,
|
|
|
- train_dataset=train_dataset,
|
|
|
- train_batch_size=train_batch_size,
|
|
|
- eval_dataset=eval_dataset,
|
|
|
- save_interval_epochs=save_interval_epochs,
|
|
|
- log_interval_steps=log_interval_steps,
|
|
|
- save_dir=save_dir,
|
|
|
- early_stop=early_stop,
|
|
|
- early_stop_patience=early_stop_patience,
|
|
|
- use_vdl=use_vdl)
|
|
|
-
|
|
|
- def quant_aware_train(self,
|
|
|
- num_epochs,
|
|
|
- train_dataset,
|
|
|
- train_batch_size=2,
|
|
|
- eval_dataset=None,
|
|
|
- optimizer=None,
|
|
|
- save_interval_epochs=1,
|
|
|
- log_interval_steps=2,
|
|
|
- save_dir='output',
|
|
|
- learning_rate=0.0001,
|
|
|
- lr_decay_power=0.9,
|
|
|
- early_stop=False,
|
|
|
- early_stop_patience=5,
|
|
|
- use_vdl=True,
|
|
|
- resume_checkpoint=None,
|
|
|
- quant_config=None):
|
|
|
- """
|
|
|
- Quantization-aware training.
|
|
|
- Args:
|
|
|
- num_epochs(int): The number of epochs.
|
|
|
- train_dataset(paddlers.dataset): Training dataset.
|
|
|
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
- eval_dataset(paddlers.dataset, optional):
|
|
|
- Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
- optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
- Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
- learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
- lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
- quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
|
|
|
- configuration will be used. Defaults to None.
|
|
|
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
|
|
|
- from. If None, no training checkpoint will be resumed. Defaults to None.
|
|
|
-
|
|
|
- """
|
|
|
- self._prepare_qat(quant_config)
|
|
|
- self.train(
|
|
|
- num_epochs=num_epochs,
|
|
|
- train_dataset=train_dataset,
|
|
|
- train_batch_size=train_batch_size,
|
|
|
- eval_dataset=eval_dataset,
|
|
|
- optimizer=optimizer,
|
|
|
- save_interval_epochs=save_interval_epochs,
|
|
|
- log_interval_steps=log_interval_steps,
|
|
|
- save_dir=save_dir,
|
|
|
- pretrain_weights=None,
|
|
|
- learning_rate=learning_rate,
|
|
|
- lr_decay_power=lr_decay_power,
|
|
|
- early_stop=early_stop,
|
|
|
- early_stop_patience=early_stop_patience,
|
|
|
- use_vdl=use_vdl,
|
|
|
- resume_checkpoint=resume_checkpoint)
|
|
|
-
|
|
|
- def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
- """
|
|
|
- Evaluate the model.
|
|
|
- Args:
|
|
|
- eval_dataset(paddlers.dataset): Evaluation dataset.
|
|
|
- batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
|
|
|
- return_details(bool, optional): Whether to return evaluation details. Defaults to False.
|
|
|
-
|
|
|
- Returns:
|
|
|
- collections.OrderedDict with key-value pairs:
|
|
|
- {"top1": `acc of top1`,
|
|
|
- "top5": `acc of top5`}.
|
|
|
-
|
|
|
- """
|
|
|
- arrange_transforms(
|
|
|
- model_type=self.model_type,
|
|
|
- transforms=eval_dataset.transforms,
|
|
|
- mode='eval')
|
|
|
-
|
|
|
- self.net.eval()
|
|
|
- nranks = paddle.distributed.get_world_size()
|
|
|
- local_rank = paddle.distributed.get_rank()
|
|
|
- if nranks > 1:
|
|
|
- # Initialize parallel environment if not done.
|
|
|
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
- ):
|
|
|
- paddle.distributed.init_parallel_env()
|
|
|
-
|
|
|
- batch_size_each_card = get_single_card_bs(batch_size)
|
|
|
- if batch_size_each_card > 1:
|
|
|
- batch_size_each_card = 1
|
|
|
- batch_size = batch_size_each_card * paddlers.env_info['num']
|
|
|
- logging.warning(
|
|
|
- "Segmenter only supports batch_size=1 for each gpu/cpu card " \
|
|
|
- "during evaluation, so batch_size " \
|
|
|
- "is forcibly set to {}.".format(batch_size))
|
|
|
- self.eval_data_loader = self.build_data_loader(
|
|
|
- eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
-
|
|
|
- logging.info(
|
|
|
- "Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
- eval_dataset.num_samples,
|
|
|
- math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
-
|
|
|
- top1s = []
|
|
|
- top5s = []
|
|
|
- with paddle.no_grad():
|
|
|
- for step, data in enumerate(self.eval_data_loader):
|
|
|
- data.append(eval_dataset.transforms.transforms)
|
|
|
- outputs = self.run(self.net, data, 'eval')
|
|
|
- top1s.append(outputs["top1"])
|
|
|
- top5s.append(outputs["top5"])
|
|
|
-
|
|
|
- top1 = np.mean(top1s)
|
|
|
- top5 = np.mean(top5s)
|
|
|
- eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
|
|
|
- if return_details:
|
|
|
- # TODO: add details
|
|
|
- return eval_metrics, None
|
|
|
- return eval_metrics
|
|
|
-
|
|
|
- def predict(self, img_file, transforms=None):
|
|
|
- """
|
|
|
- Do inference.
|
|
|
- Args:
|
|
|
- Args:
|
|
|
- img_file(List[np.ndarray or str], str or np.ndarray):
|
|
|
- Image path or decoded image data in a BGR format, which also could constitute a list,
|
|
|
- meaning all images to be predicted as a mini-batch.
|
|
|
- transforms(paddlers.transforms.Compose or None, optional):
|
|
|
- Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
|
|
|
-
|
|
|
- Returns:
|
|
|
- If img_file is a string or np.array, the result is a dict with key-value pairs:
|
|
|
- {"label map": `class_ids_map`, "scores_map": `label_names_map`}.
|
|
|
- If img_file is a list, the result is a list composed of dicts with the corresponding fields:
|
|
|
- class_ids_map(np.ndarray): class_ids
|
|
|
- scores_map(np.ndarray): scores
|
|
|
- label_names_map(np.ndarray): label_names
|
|
|
-
|
|
|
- """
|
|
|
- if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
- raise Exception("transforms need to be defined, now is None.")
|
|
|
- if transforms is None:
|
|
|
- transforms = self.test_transforms
|
|
|
- if isinstance(img_file, (str, np.ndarray)):
|
|
|
- images = [img_file]
|
|
|
- else:
|
|
|
- images = img_file
|
|
|
- batch_im, batch_origin_shape = self._preprocess(images, transforms,
|
|
|
- self.model_type)
|
|
|
- self.net.eval()
|
|
|
- data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
- outputs = self.run(self.net, data, 'test')
|
|
|
- label_list = outputs['class_ids']
|
|
|
- score_list = outputs['scores']
|
|
|
- name_list = outputs['label_names']
|
|
|
- if isinstance(img_file, list):
|
|
|
- prediction = [{
|
|
|
- 'class_ids_map': l,
|
|
|
- 'scores_map': s,
|
|
|
- 'label_names_map': n,
|
|
|
- } for l, s, n in zip(label_list, score_list, name_list)]
|
|
|
- else:
|
|
|
- prediction = {
|
|
|
- 'class_ids': label_list[0],
|
|
|
- 'scores': score_list[0],
|
|
|
- 'label_names': name_list[0]
|
|
|
- }
|
|
|
- return prediction
|
|
|
-
|
|
|
- def _preprocess(self, images, transforms, to_tensor=True):
|
|
|
- arrange_transforms(
|
|
|
- model_type=self.model_type, transforms=transforms, mode='test')
|
|
|
- batch_im = list()
|
|
|
- batch_ori_shape = list()
|
|
|
- for im in images:
|
|
|
- sample = {'image': im}
|
|
|
- if isinstance(sample['image'], str):
|
|
|
- sample = ImgDecoder(to_rgb=False)(sample)
|
|
|
- ori_shape = sample['image'].shape[:2]
|
|
|
- im = transforms(sample)[0]
|
|
|
- batch_im.append(im)
|
|
|
- batch_ori_shape.append(ori_shape)
|
|
|
- if to_tensor:
|
|
|
- batch_im = paddle.to_tensor(batch_im)
|
|
|
- else:
|
|
|
- batch_im = np.asarray(batch_im)
|
|
|
-
|
|
|
- return batch_im, batch_ori_shape
|
|
|
-
|
|
|
- @staticmethod
|
|
|
- def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
- batch_restore_list = list()
|
|
|
- for ori_shape in batch_ori_shape:
|
|
|
- restore_list = list()
|
|
|
- h, w = ori_shape[0], ori_shape[1]
|
|
|
- for op in transforms:
|
|
|
- if op.__class__.__name__ == 'Resize':
|
|
|
- restore_list.append(('resize', (h, w)))
|
|
|
- h, w = op.target_size
|
|
|
- elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
- restore_list.append(('resize', (h, w)))
|
|
|
- im_short_size = min(h, w)
|
|
|
- im_long_size = max(h, w)
|
|
|
- scale = float(op.short_size) / float(im_short_size)
|
|
|
- if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
- scale = float(op.max_size) / float(im_long_size)
|
|
|
- h = int(round(h * scale))
|
|
|
- w = int(round(w * scale))
|
|
|
- elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
- restore_list.append(('resize', (h, w)))
|
|
|
- im_long_size = max(h, w)
|
|
|
- scale = float(op.long_size) / float(im_long_size)
|
|
|
- h = int(round(h * scale))
|
|
|
- w = int(round(w * scale))
|
|
|
- elif op.__class__.__name__ == 'Padding':
|
|
|
- if op.target_size:
|
|
|
- target_h, target_w = op.target_size
|
|
|
- else:
|
|
|
- target_h = int(
|
|
|
- (np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
- target_w = int(
|
|
|
- (np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
-
|
|
|
- if op.pad_mode == -1:
|
|
|
- offsets = op.offsets
|
|
|
- elif op.pad_mode == 0:
|
|
|
- offsets = [0, 0]
|
|
|
- elif op.pad_mode == 1:
|
|
|
- offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
- else:
|
|
|
- offsets = [target_h - h, target_w - w]
|
|
|
- restore_list.append(('padding', (h, w), offsets))
|
|
|
- h, w = target_h, target_w
|
|
|
-
|
|
|
- batch_restore_list.append(restore_list)
|
|
|
- return batch_restore_list
|
|
|
-
|
|
|
-
|
|
|
-class ResNet50_vd(BaseClassifier):
|
|
|
- def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
- super(ResNet50_vd, self).__init__(
|
|
|
- model_name='ResNet50_vd',
|
|
|
- num_classes=num_classes,
|
|
|
- use_mixed_loss=use_mixed_loss,
|
|
|
- **params)
|
|
|
-
|
|
|
-
|
|
|
-class MobileNetV3_small_x1_0(BaseClassifier):
|
|
|
- def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
- super(MobileNetV3_small_x1_0, self).__init__(
|
|
|
- model_name='MobileNetV3_small_x1_0',
|
|
|
- num_classes=num_classes,
|
|
|
- use_mixed_loss=use_mixed_loss,
|
|
|
- **params)
|
|
|
-
|
|
|
-
|
|
|
-class HRNet_W18_C(BaseClassifier):
|
|
|
- def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
- super(HRNet_W18_C, self).__init__(
|
|
|
- model_name='HRNet_W18_C',
|
|
|
- num_classes=num_classes,
|
|
|
- use_mixed_loss=use_mixed_loss,
|
|
|
- **params)
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import math
|
|
|
+import os.path as osp
|
|
|
+import numpy as np
|
|
|
+from collections import OrderedDict
|
|
|
+import paddle
|
|
|
+import paddle.nn.functional as F
|
|
|
+from paddle.static import InputSpec
|
|
|
+import paddlers.models.ppcls as paddleclas
|
|
|
+import paddlers.custom_models.cls as cmcls
|
|
|
+import paddlers
|
|
|
+from paddlers.transforms import arrange_transforms
|
|
|
+from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
+import paddlers.utils.logging as logging
|
|
|
+from .base import BaseModel
|
|
|
+from paddlers.models.ppcls.metric import build_metrics
|
|
|
+from paddlers.models.ppcls.loss import build_loss
|
|
|
+from paddlers.models.ppcls.data.postprocess import build_postprocess
|
|
|
+from paddlers.utils.checkpoint import cls_pretrain_weights_dict
|
|
|
+from paddlers.transforms import ImgDecoder, Resize
|
|
|
+
|
|
|
+__all__ = [
|
|
|
+ "ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C", "CondenseNetV2_b"
|
|
|
+]
|
|
|
+
|
|
|
+
|
|
|
+class BaseClassifier(BaseModel):
|
|
|
+ def __init__(self,
|
|
|
+ model_name,
|
|
|
+ in_channels=3,
|
|
|
+ num_classes=2,
|
|
|
+ use_mixed_loss=False,
|
|
|
+ **params):
|
|
|
+ self.init_params = locals()
|
|
|
+ if 'with_net' in self.init_params:
|
|
|
+ del self.init_params['with_net']
|
|
|
+ super(BaseClassifier, self).__init__('classifier')
|
|
|
+ if not hasattr(paddleclas.arch.backbone, model_name) and \
|
|
|
+ not hasattr(cmcls, model_name):
|
|
|
+ raise Exception("ERROR: There's no model named {}.".format(
|
|
|
+ model_name))
|
|
|
+ self.model_name = model_name
|
|
|
+ self.in_channels = in_channels
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.use_mixed_loss = use_mixed_loss
|
|
|
+ self.metrics = None
|
|
|
+ self.losses = None
|
|
|
+ self.labels = None
|
|
|
+ self._postprocess = None
|
|
|
+ if params.get('with_net', True):
|
|
|
+ params.pop('with_net', None)
|
|
|
+ self.net = self.build_net(**params)
|
|
|
+ self.find_unused_parameters = True
|
|
|
+
|
|
|
+ def build_net(self, **params):
|
|
|
+ with paddle.utils.unique_name.guard():
|
|
|
+ model = dict(paddleclas.arch.backbone.__dict__,
|
|
|
+ **cmcls.__dict__)[self.model_name]
|
|
|
+ # TODO: Determine whether there is in_channels
|
|
|
+ try:
|
|
|
+ net = model(
|
|
|
+ class_num=self.num_classes,
|
|
|
+ in_channels=self.in_channels,
|
|
|
+ **params)
|
|
|
+ except:
|
|
|
+ net = model(class_num=self.num_classes, **params)
|
|
|
+ self.in_channels = 3
|
|
|
+ return net
|
|
|
+
|
|
|
+ def _fix_transforms_shape(self, image_shape):
|
|
|
+ if hasattr(self, 'test_transforms'):
|
|
|
+ if self.test_transforms is not None:
|
|
|
+ has_resize_op = False
|
|
|
+ resize_op_idx = -1
|
|
|
+ normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
+ for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
+ name = op.__class__.__name__
|
|
|
+ if name == 'Normalize':
|
|
|
+ normalize_op_idx = idx
|
|
|
+ if 'Resize' in name:
|
|
|
+ has_resize_op = True
|
|
|
+ resize_op_idx = idx
|
|
|
+
|
|
|
+ if not has_resize_op:
|
|
|
+ self.test_transforms.transforms.insert(
|
|
|
+ normalize_op_idx, Resize(target_size=image_shape))
|
|
|
+ else:
|
|
|
+ self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
+ target_size=image_shape)
|
|
|
+
|
|
|
+ def _get_test_inputs(self, image_shape):
|
|
|
+ if image_shape is not None:
|
|
|
+ if len(image_shape) == 2:
|
|
|
+ image_shape = [1, 3] + image_shape
|
|
|
+ self._fix_transforms_shape(image_shape[-2:])
|
|
|
+ else:
|
|
|
+ image_shape = [None, 3, -1, -1]
|
|
|
+ self.fixed_input_shape = image_shape
|
|
|
+ input_spec = [
|
|
|
+ InputSpec(
|
|
|
+ shape=image_shape, name='image', dtype='float32')
|
|
|
+ ]
|
|
|
+ return input_spec
|
|
|
+
|
|
|
+ def run(self, net, inputs, mode):
|
|
|
+ net_out = net(inputs[0])
|
|
|
+ label = paddle.to_tensor(inputs[1], dtype="int64")
|
|
|
+ outputs = OrderedDict()
|
|
|
+ if mode == 'test':
|
|
|
+ result = self._postprocess(net_out)
|
|
|
+ outputs = result[0]
|
|
|
+
|
|
|
+ if mode == 'eval':
|
|
|
+ # print(self._postprocess(net_out)[0]) # for test
|
|
|
+ label = paddle.unsqueeze(label, axis=-1)
|
|
|
+ metric_dict = self.metrics(net_out, label)
|
|
|
+ outputs['top1'] = metric_dict["top1"]
|
|
|
+ outputs['top5'] = metric_dict["top5"]
|
|
|
+
|
|
|
+ if mode == 'train':
|
|
|
+ loss_list = self.losses(net_out, label)
|
|
|
+ outputs['loss'] = loss_list['loss']
|
|
|
+ return outputs
|
|
|
+
|
|
|
+ def default_metric(self):
|
|
|
+ default_config = [{"TopkAcc": {"topk": [1, 5]}}]
|
|
|
+ return build_metrics(default_config)
|
|
|
+
|
|
|
+ def default_loss(self):
|
|
|
+ # TODO: use mixed loss and other loss
|
|
|
+ default_config = [{"CELoss": {"weight": 1.0}}]
|
|
|
+ return build_loss(default_config)
|
|
|
+
|
|
|
+ def default_optimizer(self,
|
|
|
+ parameters,
|
|
|
+ learning_rate,
|
|
|
+ num_epochs,
|
|
|
+ num_steps_each_epoch,
|
|
|
+ last_epoch=-1,
|
|
|
+ L2_coeff=0.00007):
|
|
|
+ decay_step = num_epochs * num_steps_each_epoch
|
|
|
+ lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
|
|
|
+ learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
|
|
|
+ optimizer = paddle.optimizer.Momentum(
|
|
|
+ learning_rate=lr_scheduler,
|
|
|
+ parameters=parameters,
|
|
|
+ momentum=0.9,
|
|
|
+ weight_decay=paddle.regularizer.L2Decay(L2_coeff))
|
|
|
+ return optimizer
|
|
|
+
|
|
|
+ def default_postprocess(self, class_id_map_file):
|
|
|
+ default_config = {
|
|
|
+ "name": "Topk",
|
|
|
+ "topk": 1,
|
|
|
+ "class_id_map_file": class_id_map_file
|
|
|
+ }
|
|
|
+ return build_postprocess(default_config)
|
|
|
+
|
|
|
+ def train(self,
|
|
|
+ num_epochs,
|
|
|
+ train_dataset,
|
|
|
+ train_batch_size=2,
|
|
|
+ eval_dataset=None,
|
|
|
+ optimizer=None,
|
|
|
+ save_interval_epochs=1,
|
|
|
+ log_interval_steps=2,
|
|
|
+ save_dir='output',
|
|
|
+ pretrain_weights='IMAGENET',
|
|
|
+ learning_rate=0.1,
|
|
|
+ lr_decay_power=0.9,
|
|
|
+ early_stop=False,
|
|
|
+ early_stop_patience=5,
|
|
|
+ use_vdl=True,
|
|
|
+ resume_checkpoint=None):
|
|
|
+ """
|
|
|
+ Train the model.
|
|
|
+ Args:
|
|
|
+ num_epochs(int): The number of epochs.
|
|
|
+ train_dataset(paddlers.dataset): Training dataset.
|
|
|
+ train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
+ eval_dataset(paddlers.dataset, optional):
|
|
|
+ Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
+ optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
+ Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
+ save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
+ log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
+ save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
+ pretrain_weights(str or None, optional):
|
|
|
+ None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
|
|
|
+ learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
+ lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
+ early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
+ early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
+ use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
+ resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
|
|
+ If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
|
|
+ `pretrain_weights` can be set simultaneously. Defaults to None.
|
|
|
+
|
|
|
+ """
|
|
|
+ if self.status == 'Infer':
|
|
|
+ logging.error(
|
|
|
+ "Exported inference model does not support training.",
|
|
|
+ exit=True)
|
|
|
+ if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
+ logging.error(
|
|
|
+ "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
|
|
|
+ exit=True)
|
|
|
+ self.labels = train_dataset.labels
|
|
|
+ if self.losses is None:
|
|
|
+ self.losses = self.default_loss()
|
|
|
+ self.metrics = self.default_metric()
|
|
|
+ self._postprocess = self.default_postprocess(train_dataset.label_list)
|
|
|
+ # print(self._postprocess.class_id_map)
|
|
|
+
|
|
|
+ if optimizer is None:
|
|
|
+ num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
+ self.optimizer = self.default_optimizer(
|
|
|
+ self.net.parameters(), learning_rate, num_epochs,
|
|
|
+ num_steps_each_epoch, lr_decay_power)
|
|
|
+ else:
|
|
|
+ self.optimizer = optimizer
|
|
|
+
|
|
|
+ if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
|
|
+ if pretrain_weights not in cls_pretrain_weights_dict[
|
|
|
+ self.model_name]:
|
|
|
+ logging.warning(
|
|
|
+ "Path of pretrain_weights('{}') does not exist!".format(
|
|
|
+ pretrain_weights))
|
|
|
+ logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
|
|
+ "If don't want to use pretrain weights, "
|
|
|
+ "set pretrain_weights to be None.".format(
|
|
|
+ cls_pretrain_weights_dict[self.model_name][
|
|
|
+ 0]))
|
|
|
+ pretrain_weights = cls_pretrain_weights_dict[self.model_name][0]
|
|
|
+ elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
|
|
+ if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
+ logging.error(
|
|
|
+ "Invalid pretrain weights. Please specify a '.pdparams' file.",
|
|
|
+ exit=True)
|
|
|
+ pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
+ is_backbone_weights = False # pretrain_weights == 'IMAGENET' # TODO: this is backbone
|
|
|
+ self.net_initialize(
|
|
|
+ pretrain_weights=pretrain_weights,
|
|
|
+ save_dir=pretrained_dir,
|
|
|
+ resume_checkpoint=resume_checkpoint,
|
|
|
+ is_backbone_weights=is_backbone_weights)
|
|
|
+
|
|
|
+ self.train_loop(
|
|
|
+ num_epochs=num_epochs,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=train_batch_size,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ save_interval_epochs=save_interval_epochs,
|
|
|
+ log_interval_steps=log_interval_steps,
|
|
|
+ save_dir=save_dir,
|
|
|
+ early_stop=early_stop,
|
|
|
+ early_stop_patience=early_stop_patience,
|
|
|
+ use_vdl=use_vdl)
|
|
|
+
|
|
|
+ def quant_aware_train(self,
|
|
|
+ num_epochs,
|
|
|
+ train_dataset,
|
|
|
+ train_batch_size=2,
|
|
|
+ eval_dataset=None,
|
|
|
+ optimizer=None,
|
|
|
+ save_interval_epochs=1,
|
|
|
+ log_interval_steps=2,
|
|
|
+ save_dir='output',
|
|
|
+ learning_rate=0.0001,
|
|
|
+ lr_decay_power=0.9,
|
|
|
+ early_stop=False,
|
|
|
+ early_stop_patience=5,
|
|
|
+ use_vdl=True,
|
|
|
+ resume_checkpoint=None,
|
|
|
+ quant_config=None):
|
|
|
+ """
|
|
|
+ Quantization-aware training.
|
|
|
+ Args:
|
|
|
+ num_epochs(int): The number of epochs.
|
|
|
+ train_dataset(paddlers.dataset): Training dataset.
|
|
|
+ train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
+ eval_dataset(paddlers.dataset, optional):
|
|
|
+ Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
+ optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
+ Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
+ save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
+ log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
+ save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
+ learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
+ lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
+ early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
+ early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
+ use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
+ quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
|
|
|
+ configuration will be used. Defaults to None.
|
|
|
+ resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
|
|
|
+ from. If None, no training checkpoint will be resumed. Defaults to None.
|
|
|
+
|
|
|
+ """
|
|
|
+ self._prepare_qat(quant_config)
|
|
|
+ self.train(
|
|
|
+ num_epochs=num_epochs,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=train_batch_size,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ optimizer=optimizer,
|
|
|
+ save_interval_epochs=save_interval_epochs,
|
|
|
+ log_interval_steps=log_interval_steps,
|
|
|
+ save_dir=save_dir,
|
|
|
+ pretrain_weights=None,
|
|
|
+ learning_rate=learning_rate,
|
|
|
+ lr_decay_power=lr_decay_power,
|
|
|
+ early_stop=early_stop,
|
|
|
+ early_stop_patience=early_stop_patience,
|
|
|
+ use_vdl=use_vdl,
|
|
|
+ resume_checkpoint=resume_checkpoint)
|
|
|
+
|
|
|
+ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
+ """
|
|
|
+ Evaluate the model.
|
|
|
+ Args:
|
|
|
+ eval_dataset(paddlers.dataset): Evaluation dataset.
|
|
|
+ batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
|
|
|
+ return_details(bool, optional): Whether to return evaluation details. Defaults to False.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ collections.OrderedDict with key-value pairs:
|
|
|
+ {"top1": `acc of top1`,
|
|
|
+ "top5": `acc of top5`}.
|
|
|
+
|
|
|
+ """
|
|
|
+ arrange_transforms(
|
|
|
+ model_type=self.model_type,
|
|
|
+ transforms=eval_dataset.transforms,
|
|
|
+ mode='eval')
|
|
|
+
|
|
|
+ self.net.eval()
|
|
|
+ nranks = paddle.distributed.get_world_size()
|
|
|
+ local_rank = paddle.distributed.get_rank()
|
|
|
+ if nranks > 1:
|
|
|
+ # Initialize parallel environment if not done.
|
|
|
+ if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
+ ):
|
|
|
+ paddle.distributed.init_parallel_env()
|
|
|
+
|
|
|
+ batch_size_each_card = get_single_card_bs(batch_size)
|
|
|
+ if batch_size_each_card > 1:
|
|
|
+ batch_size_each_card = 1
|
|
|
+ batch_size = batch_size_each_card * paddlers.env_info['num']
|
|
|
+ logging.warning(
|
|
|
+ "Segmenter only supports batch_size=1 for each gpu/cpu card " \
|
|
|
+ "during evaluation, so batch_size " \
|
|
|
+ "is forcibly set to {}.".format(batch_size))
|
|
|
+ self.eval_data_loader = self.build_data_loader(
|
|
|
+ eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
+
|
|
|
+ logging.info(
|
|
|
+ "Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
+ eval_dataset.num_samples,
|
|
|
+ math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
+
|
|
|
+ top1s = []
|
|
|
+ top5s = []
|
|
|
+ with paddle.no_grad():
|
|
|
+ for step, data in enumerate(self.eval_data_loader):
|
|
|
+ data.append(eval_dataset.transforms.transforms)
|
|
|
+ outputs = self.run(self.net, data, 'eval')
|
|
|
+ top1s.append(outputs["top1"])
|
|
|
+ top5s.append(outputs["top5"])
|
|
|
+
|
|
|
+ top1 = np.mean(top1s)
|
|
|
+ top5 = np.mean(top5s)
|
|
|
+ eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
|
|
|
+ if return_details:
|
|
|
+ # TODO: add details
|
|
|
+ return eval_metrics, None
|
|
|
+ return eval_metrics
|
|
|
+
|
|
|
+ def predict(self, img_file, transforms=None):
|
|
|
+ """
|
|
|
+ Do inference.
|
|
|
+ Args:
|
|
|
+ Args:
|
|
|
+ img_file(List[np.ndarray or str], str or np.ndarray):
|
|
|
+ Image path or decoded image data in a BGR format, which also could constitute a list,
|
|
|
+ meaning all images to be predicted as a mini-batch.
|
|
|
+ transforms(paddlers.transforms.Compose or None, optional):
|
|
|
+ Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ If img_file is a string or np.array, the result is a dict with key-value pairs:
|
|
|
+ {"label map": `class_ids_map`, "scores_map": `label_names_map`}.
|
|
|
+ If img_file is a list, the result is a list composed of dicts with the corresponding fields:
|
|
|
+ class_ids_map(np.ndarray): class_ids
|
|
|
+ scores_map(np.ndarray): scores
|
|
|
+ label_names_map(np.ndarray): label_names
|
|
|
+
|
|
|
+ """
|
|
|
+ if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
+ raise Exception("transforms need to be defined, now is None.")
|
|
|
+ if transforms is None:
|
|
|
+ transforms = self.test_transforms
|
|
|
+ if isinstance(img_file, (str, np.ndarray)):
|
|
|
+ images = [img_file]
|
|
|
+ else:
|
|
|
+ images = img_file
|
|
|
+ batch_im, batch_origin_shape = self._preprocess(images, transforms,
|
|
|
+ self.model_type)
|
|
|
+ self.net.eval()
|
|
|
+ data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
+ outputs = self.run(self.net, data, 'test')
|
|
|
+ label_list = outputs['class_ids']
|
|
|
+ score_list = outputs['scores']
|
|
|
+ name_list = outputs['label_names']
|
|
|
+ if isinstance(img_file, list):
|
|
|
+ prediction = [{
|
|
|
+ 'class_ids_map': l,
|
|
|
+ 'scores_map': s,
|
|
|
+ 'label_names_map': n,
|
|
|
+ } for l, s, n in zip(label_list, score_list, name_list)]
|
|
|
+ else:
|
|
|
+ prediction = {
|
|
|
+ 'class_ids': label_list[0],
|
|
|
+ 'scores': score_list[0],
|
|
|
+ 'label_names': name_list[0]
|
|
|
+ }
|
|
|
+ return prediction
|
|
|
+
|
|
|
+ def _preprocess(self, images, transforms, to_tensor=True):
|
|
|
+ arrange_transforms(
|
|
|
+ model_type=self.model_type, transforms=transforms, mode='test')
|
|
|
+ batch_im = list()
|
|
|
+ batch_ori_shape = list()
|
|
|
+ for im in images:
|
|
|
+ sample = {'image': im}
|
|
|
+ if isinstance(sample['image'], str):
|
|
|
+ sample = ImgDecoder(to_rgb=False)(sample)
|
|
|
+ ori_shape = sample['image'].shape[:2]
|
|
|
+ im = transforms(sample)[0]
|
|
|
+ batch_im.append(im)
|
|
|
+ batch_ori_shape.append(ori_shape)
|
|
|
+ if to_tensor:
|
|
|
+ batch_im = paddle.to_tensor(batch_im)
|
|
|
+ else:
|
|
|
+ batch_im = np.asarray(batch_im)
|
|
|
+
|
|
|
+ return batch_im, batch_ori_shape
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
+ batch_restore_list = list()
|
|
|
+ for ori_shape in batch_ori_shape:
|
|
|
+ restore_list = list()
|
|
|
+ h, w = ori_shape[0], ori_shape[1]
|
|
|
+ for op in transforms:
|
|
|
+ if op.__class__.__name__ == 'Resize':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ h, w = op.target_size
|
|
|
+ elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ im_short_size = min(h, w)
|
|
|
+ im_long_size = max(h, w)
|
|
|
+ scale = float(op.short_size) / float(im_short_size)
|
|
|
+ if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
+ scale = float(op.max_size) / float(im_long_size)
|
|
|
+ h = int(round(h * scale))
|
|
|
+ w = int(round(w * scale))
|
|
|
+ elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ im_long_size = max(h, w)
|
|
|
+ scale = float(op.long_size) / float(im_long_size)
|
|
|
+ h = int(round(h * scale))
|
|
|
+ w = int(round(w * scale))
|
|
|
+ elif op.__class__.__name__ == 'Padding':
|
|
|
+ if op.target_size:
|
|
|
+ target_h, target_w = op.target_size
|
|
|
+ else:
|
|
|
+ target_h = int(
|
|
|
+ (np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
+ target_w = int(
|
|
|
+ (np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
+
|
|
|
+ if op.pad_mode == -1:
|
|
|
+ offsets = op.offsets
|
|
|
+ elif op.pad_mode == 0:
|
|
|
+ offsets = [0, 0]
|
|
|
+ elif op.pad_mode == 1:
|
|
|
+ offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
+ else:
|
|
|
+ offsets = [target_h - h, target_w - w]
|
|
|
+ restore_list.append(('padding', (h, w), offsets))
|
|
|
+ h, w = target_h, target_w
|
|
|
+
|
|
|
+ batch_restore_list.append(restore_list)
|
|
|
+ return batch_restore_list
|
|
|
+
|
|
|
+
|
|
|
+class ResNet50_vd(BaseClassifier):
|
|
|
+ def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
+ super(ResNet50_vd, self).__init__(
|
|
|
+ model_name='ResNet50_vd',
|
|
|
+ num_classes=num_classes,
|
|
|
+ use_mixed_loss=use_mixed_loss,
|
|
|
+ **params)
|
|
|
+
|
|
|
+
|
|
|
+class MobileNetV3_small_x1_0(BaseClassifier):
|
|
|
+ def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
+ super(MobileNetV3_small_x1_0, self).__init__(
|
|
|
+ model_name='MobileNetV3_small_x1_0',
|
|
|
+ num_classes=num_classes,
|
|
|
+ use_mixed_loss=use_mixed_loss,
|
|
|
+ **params)
|
|
|
+
|
|
|
+
|
|
|
+class HRNet_W18_C(BaseClassifier):
|
|
|
+ def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
+ super(HRNet_W18_C, self).__init__(
|
|
|
+ model_name='HRNet_W18_C',
|
|
|
+ num_classes=num_classes,
|
|
|
+ use_mixed_loss=use_mixed_loss,
|
|
|
+ **params)
|
|
|
+
|
|
|
+
|
|
|
+class CondenseNetV2_b(BaseClassifier):
|
|
|
+ def __init__(self, num_classes=2, use_mixed_loss=False, **params):
|
|
|
+ super(CondenseNetV2_b, self).__init__(
|
|
|
+ model_name='CondenseNetV2_b',
|
|
|
+ num_classes=num_classes,
|
|
|
+ use_mixed_loss=use_mixed_loss,
|
|
|
+ **params)
|