Pārlūkot izejas kodu

path_normalization->norm_path

Bobholamovic 2 gadi atpakaļ
vecāks
revīzija
385348ff10

+ 1 - 1
docs/cases/csc_cd_cn.md

@@ -365,7 +365,7 @@ class InferDataset(paddle.io.Dataset):
         names = []
         for line in lines:
             items = line.strip().split(' ')
-            items = list(map(pdrs.utils.path_normalization, items))
+            items = list(map(pdrs.utils.norm_path, items))
             item_dict = {
                 'image_t1': osp.join(data_dir, items[0]),
                 'image_t2': osp.join(data_dir, items[1])

+ 2 - 2
paddlers/datasets/cd_dataset.py

@@ -17,7 +17,7 @@ from enum import IntEnum
 import os.path as osp
 
 from .base import BaseDataset
-from paddlers.utils import logging, get_encoding, path_normalization, is_pic
+from paddlers.utils import logging, get_encoding, norm_path, is_pic
 
 
 class CDDataset(BaseDataset):
@@ -81,7 +81,7 @@ class CDDataset(BaseDataset):
                         "Line[{}] in file_list[{}] has an incorrect number of file paths.".
                         format(line.strip(), file_list))
 
-                items = list(map(path_normalization, items))
+                items = list(map(norm_path, items))
 
                 full_path_im_t1 = osp.join(data_dir, items[0])
                 full_path_im_t2 = osp.join(data_dir, items[1])

+ 2 - 2
paddlers/datasets/clas_dataset.py

@@ -16,7 +16,7 @@ import os.path as osp
 import copy
 
 from .base import BaseDataset
-from paddlers.utils import logging, get_encoding, path_normalization, is_pic
+from paddlers.utils import logging, get_encoding, norm_path, is_pic
 
 
 class ClasDataset(BaseDataset):
@@ -62,7 +62,7 @@ class ClasDataset(BaseDataset):
                         "A space is defined as the delimiter to separate the image and label path, " \
                         "so the space cannot be in the image or label path, but the line[{}] of " \
                         " file_list[{}] has a space in the image or label path.".format(line, file_list))
-                items[0] = path_normalization(items[0])
+                items[0] = norm_path(items[0])
                 full_path_im = osp.join(data_dir, items[0])
                 label = items[1]
                 if not is_pic(full_path_im):

+ 3 - 3
paddlers/datasets/coco.py

@@ -22,7 +22,7 @@ from collections import OrderedDict
 import numpy as np
 
 from .base import BaseDataset
-from paddlers.utils import logging, get_encoding, path_normalization, is_pic
+from paddlers.utils import logging, get_encoding, norm_path, is_pic
 from paddlers.transforms import DecodeImg, MixupImage
 from paddlers.tools import YOLOAnchorCluster
 
@@ -102,8 +102,8 @@ class COCODetection(BaseDataset):
                 'name': k
             })
 
-        anno_path = path_normalization(os.path.join(self.data_dir, anno_path))
-        image_dir = path_normalization(os.path.join(self.data_dir, image_dir))
+        anno_path = norm_path(os.path.join(self.data_dir, anno_path))
+        image_dir = norm_path(os.path.join(self.data_dir, image_dir))
 
         assert anno_path.endswith('.json'), \
             'invalid coco annotation file: ' + anno_path

+ 3 - 3
paddlers/datasets/seg_dataset.py

@@ -16,7 +16,7 @@ import os.path as osp
 import copy
 
 from .base import BaseDataset
-from paddlers.utils import logging, get_encoding, path_normalization, is_pic
+from paddlers.utils import logging, get_encoding, norm_path, is_pic
 
 
 class SegDataset(BaseDataset):
@@ -62,8 +62,8 @@ class SegDataset(BaseDataset):
                         "A space is defined as the delimiter to separate the image and label path, " \
                         "so the space cannot be in the image or label path, but the line[{}] of " \
                         " file_list[{}] has a space in the image or label path.".format(line, file_list))
-                items[0] = path_normalization(items[0])
-                items[1] = path_normalization(items[1])
+                items[0] = norm_path(items[0])
+                items[1] = norm_path(items[1])
                 full_path_im = osp.join(data_dir, items[0])
                 full_path_label = osp.join(data_dir, items[1])
                 if not is_pic(full_path_im) or not is_pic(full_path_label):

+ 3 - 3
paddlers/datasets/voc.py

@@ -24,7 +24,7 @@ import xml.etree.ElementTree as ET
 import numpy as np
 
 from .base import BaseDataset
-from paddlers.utils import logging, get_encoding, path_normalization, is_pic
+from paddlers.utils import logging, get_encoding, norm_path, is_pic
 from paddlers.transforms import DecodeImg, MixupImage
 from paddlers.tools import YOLOAnchorCluster
 
@@ -115,8 +115,8 @@ class VOCDetection(BaseDataset):
                 img_file, xml_file = [
                     osp.join(data_dir, x) for x in line.strip().split()[:2]
                 ]
-                img_file = path_normalization(img_file)
-                xml_file = path_normalization(xml_file)
+                img_file = norm_path(img_file)
+                xml_file = norm_path(xml_file)
                 if not is_pic(img_file):
                     continue
                 if not osp.isfile(xml_file):

+ 2 - 2
paddlers/utils/__init__.py

@@ -15,8 +15,8 @@
 from . import logging
 from . import utils
 from .utils import (seconds_to_hms, get_encoding, get_single_card_bs, dict2str,
-                    EarlyStop, path_normalization, is_pic, MyEncoder,
-                    DisablePrint, Timer)
+                    EarlyStop, norm_path, is_pic, MyEncoder, DisablePrint,
+                    Timer)
 from .checkpoint import get_pretrain_weights, load_pretrain_weights, load_checkpoint
 from .env import get_environ_info, get_num_workers, init_parallel_env
 from .download import download_and_decompress, decompress

+ 1 - 1
paddlers/utils/utils.py

@@ -69,7 +69,7 @@ def dict2str(dict_input):
     return out.strip(', ')
 
 
-def path_normalization(path):
+def norm_path(path):
     win_sep = "\\"
     other_sep = "/"
     if platform.system() == "Windows":