Bobholamovic 2 yıl önce
ebeveyn
işleme
381e1488df

+ 1 - 1
docs/CONTRIBUTING_EN.md

@@ -15,7 +15,7 @@ The steps to contribute code to PaddleRS are as follows:
 1. Fork the official PaddleRS repository on GitHub, clone the code locally, and pull the develop branch.
 2. Write code according to [Dev Guide](dev/dev_guide_en.md) (it is recommended to develop on a new feature branch).
 3. Install pre-commit hooks to perform code style checks before each commit. Refer to [Code style specification](#3-code-style-specification).
-4. Write unit tests for the new code and make sure all the tests are successful. Refer to [Test related steps](#4-test-related-steps)
+4. Write unit tests for the new code and make sure all the tests are successful. Refer to [Test related steps](#4-test-related-steps).
 5. Create a new PR for your branch and ensure that the CLA is signed and the CI/CE finish with no errors. After that, a PaddleRS team member will review the code you contributed.
 6. Modify the code according to the review and resubmit it until PR is merged or closed.
 

+ 5 - 1
docs/apis/data_cn.md

@@ -145,7 +145,7 @@
 
 返回格式如下:
 
-- 若`read_geo_info`为`False`,则以np.ndarray形式返回读取的影像数据([h, w, c]排布);
+- 若`read_geo_info`为`False`,则以`numpy.ndarray`形式返回读取的影像数据([h, w, c]排布);
 - 若`read_geo_info`为`True`,则返回一个二元组,其中第一个元素为读取的影像数据,第二个元素为一个字典,其中的键值对为影像的地理信息,如地理变换信息、地理投影信息等。
 
 ## 数据变换算子
@@ -168,6 +168,10 @@
 |`'gt_poly'`|目标检测任务中的多边形标注数据。|
 |`'target'`|图像复原中的目标影像路径或数据。|
 
+### 构造数据变换算子
+
+请参考[此文档](../intro/transforms_cons_params_cn.md)。
+
 ### 组合数据变换算子
 
 使用`paddlers.transforms.Compose`对一组数据变换算子进行组合。`Compose`对象在构造时接受一个列表输入。在调用`Compose`对象时,相当于串行执行列表中的每一个数据变换算子。示例如下:

+ 32 - 28
docs/apis/data_en.md

@@ -1,6 +1,6 @@
 [简体中文](data_cn.md) | English
 
-# Data Related API Description
+# Data Related APIs
 
 ## Dataset
 
@@ -17,8 +17,8 @@ The initialization parameter list is as follows:
 |`data_dir`|`str`|Directory that stores the dataset.||
 |`file_list`|`str`|File list path. File list is a text file, in which each line contains the path infomation of one sample. The specific requirements of `CDDataset` on the file list are listed below.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data.||
-|`label_list`|`str` \| `None`|Label list file. label list is a text file, in which each line contains the name of class.|`None`|
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`label_list`|`str` \| `None`|Label list path. Label list is a text file, in which each line contains the name of class.|`None`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 |`with_seg_labels`|`bool`|Specify this option as `True` when the dataset contains segmentation labels for each phase.|`False`|
 |`binarize_labels`|`bool`|If it is `True`, the change labels (and the segmentation label) are binarized after all data transformation operators except `Arrange` are applied. For example, binarize labels valued in {0, 255} to {0, 1}.|`False`|
@@ -37,10 +37,10 @@ The initialization parameter list is as follows:
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`data_dir`|`str`|Directory that stores the dataset.||
-|`file_list`|`str`|File list path. file list is a text file, in which each line contains the path infomation of one sample.The specific requirements of `ClasDataset` on the file list are listed below.||
+|`file_list`|`str`|File list path. File list is a text file, in which each line contains the path infomation of one sample.The specific requirements of `ClasDataset` on the file list are listed below.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data.||
-|`label_list`|`str` \| `None`|Label list file. label list is a text file, in which each line contains the name of class.|`None`|
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`label_list`|`str` \| `None`|Label list path. Label list is a text file, in which each line contains the name of class.|`None`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 
 The requirements of `ClasDataset` for the file list are as follows:
@@ -59,8 +59,8 @@ The initialization parameter list is as follows:
 |`image_dir`|`str`|Directory of input images.||
 |`ann_path`|`str`|[COCO Format](https://cocodataset.org/#home)label file path.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data.||
-|`label_list`|`str` \| `None`|Label list file. label list is a text file, in which each line contains the name of class.|`None`|
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`label_list`|`str` \| `None`|Label list path. Label list is a text file, in which each line contains the name of class.|`None`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 |`allow_empty`|`bool`|Whether to add negative samples to the dataset.|`False`|
 |`empty_ratio`|`float`|Negative sample ratio. Take effect only if `allow_empty` is `True`. If `empty_ratio` is negative or greater than or equal to 1, all negative samples generated are retained.|`1.0`|
@@ -76,15 +76,15 @@ The initialization parameter list is as follows:
 |`data_dir`|`str`|Directory that stores the dataset. ||
 |`file_list`|`str`|File list path. File list is a text file, in which each line contains the path infomation of one sample.The specific requirements of `VOCDetDataset` on the file list are listed below.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data. ||
-|`label_list`|`str` \| `None`|Label list file. label list is a text file, in which each line contains the name of class. |`None`|
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`label_list`|`str` \| `None`|Label list path. Label list is a text file, in which each line contains the name of class.|`None`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 |`allow_empty`|`bool`|Whether to add negative samples to the dataset.|`False`|
-|`empty_ratio`|`float`|Negative sample ratio. Take effect only if `allow_empty` is `True`. If `empty_ratio` is negative or greater than or equal to 1, all negative samples generated are retained.|`1.0`|
+|`empty_ratio`|`float`|Negative sample ratio. Takes effect only if `allow_empty` is `True`. If `empty_ratio` is negative or greater than or equal to `1`, all negative samples generated will be retained.|`1.0`|
 
 The requirements of `VOCDetDataset` for the file list are as follows:
 
-- Each line in the file list should contain two space-separated items representing, in turn, the path of input image relative to `data_dir` and the path of [Pascal VOC Format](http://host.robots.ox.ac.uk/pascal/VOC/)label file relative to `data_dir`.
+- Each line in the file list should contain two space-separated items representing, in turn, the path of input image relative to `data_dir` and the path of [Pascal VOC Format](http://host.robots.ox.ac.uk/pascal/VOC/) label file relative to `data_dir`.
 
 ### Image Restoration Dataset `ResDataset`
 
@@ -97,7 +97,7 @@ The initialization parameter list is as follows:
 |`data_dir`|`str`|Directory that stores the dataset.||
 |`file_list`|`str`|File list path. file list is a text file, in which each line contains the path infomation of one sample.The specific requirements of `ResDataset` on the file list are listed below.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data.||
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 |`sr_factor`|`int` \| `None`|For super resolution reconstruction task, this is the scaling factor. For other tasks, please specify `sr_factor` as `None`.|`None`|
 
@@ -116,8 +116,8 @@ The initialization parameter list is as follows:
 |`data_dir`|`str`|Directory that stores the dataset.||
 |`file_list`|`str`|File list path. file list is a text file, in which each line contains the path infomation of one sample.The specific requirements of `SegDataset` on the file list are listed below.||
 |`transforms`|`paddlers.transforms.Compose`|Data transformation operators applied to input data.||
-|`label_list`|`str` \| `None`|Label list file. label list is a text file, in which each line contains the name of class.|`None`|
-|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: when the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
+|`label_list`|`str` \| `None`|Label list path. Label list is a text file, in which each line contains the name of class.|`None`|
+|`num_workers`|`int` \| `str`|Number of auxiliary processes used when loading data. If it is set to `'auto'`, use the following rules to determine the number of processes to use: When the number of CPU cores is greater than 16, 8 data read auxiliary processes are used; otherwise, the number of auxiliary processes is set to half the counts of CPU cores.|`'auto'`|
 |`shuffle`|`bool`|Whether to randomly shuffle the samples in the dataset.|`False`|
 
 The requirements of `SegDataset` for the file list are as follows:
@@ -126,9 +126,9 @@ The requirements of `SegDataset` for the file list are as follows:
 
 ## API of Data Reading
 
-Remote sensing images come from various sources and their data formats are very complicated. PaddleRS provides a unified interface for reading remote sensing images of different types and formats. At present, PaddleRS can read common file formats such as .png, .jpg, .bmp and .npy, as well as handle GeoTiff, img and other image formats commonly used in remote sensing.
+Remote sensing images come from various sources and their data formats are very complicated. PaddleRS provides a unified interface for reading remote sensing images of different types and formats. At present, PaddleRS can read common file formats such as .png, .jpg, .bmp, and .npy, as well as handle GeoTiff, img, and other image formats commonly used in remote sensing.
 
-Depending on the practical demands, the user can choose `paddlers.transforms.decode_image()` or `paddlers.transforms.DecodeImg` to read data. `DecodeImg` is one of [Data transformation operators](#Data transformation operators), can be combined with other operators. `decode_image` is the encapsulation of `DecodeImg` operator, which is convenient use in the way of function calls.
+Depending on the practical demands, the user can choose `paddlers.transforms.decode_image()` or `paddlers.transforms.DecodeImg` to read data. `DecodeImg` is one of [Data transformation operators](#data-transformation-operators), can be combined with other operators. `decode_image` is the encapsulation of `DecodeImg` operator, which is convenient use in the way of function calls.
 
 The parameter list of `decode_image()` function is as follows:
 
@@ -145,7 +145,7 @@ The parameter list of `decode_image()` function is as follows:
 
 The return format is as follows:
 
-- If `read_geo_info` is `False`, the image data ([h, w, c] arrangement) is returned in the format of np.ndarray.
+- If `read_geo_info` is `False`, the image ([h, w, c] arrangement) is returned in the format of `numpy.ndarray`.
 - If `read_geo_info` is `True`, return a tuple consisting of two elements. The first element is the image data, and the second element is a dictionary containing the geographic information of the image, such as the geotransform information and geographic projection information.
 
 ## Data Transformation Operator
@@ -154,21 +154,25 @@ In PaddleRS a series of classes are defined that, when instantiated, perform cer
 
 ### `Transform`
 
-The `__call__` method of the `Transform` object takes a unique argument `sample`. `sample` must be a dictionary or a sequence of dictionaries. When `sample` is a sequence, perform data transformations for each dictionary in `sample` and return the results sequentially stored in a Python build-in list; when `sample` is a dictionary, the `Transform` object extracts input from some of its key-value pairs (these keys are called "input keys"), performs the transformation, and writes the results as key-value pairs into `sample`(these keys are called "output keys"). It should be noted that many of the `Transform` objects in PaddleRS overwrite key-value pairs, that is, there is an intersection between the input key and the output key. The common keys in `sample` and their meanings are as follows:
+The `__call__` method of the `Transform` object takes a unique argument `sample`. `sample` must be a dictionary or a sequence of dictionaries. When `sample` is a sequence, the `Transform` object performs data transformations for each dictionary in `sample` and returns the results sequentially stored in a Python build-in list. When `sample` is a dictionary, the `Transform` object extracts input from some of its key-value pairs (these keys are called "input keys"), performs the transformation, and writes the results as key-value pairs into `sample` (these keys are called *output keys*). It should be noted that many of the `Transform` objects in PaddleRS overwrite key-value pairs, that is, there is an intersection between the input key and the output key. The common keys in `sample` and their meanings are as follows:
 
 |Key Name|Description|
 |----|----|
-|`'image'`|Image path or data. For change detection task, it refers to the first phase image data.|
-|`'image2'`|Second phase image data in change detection task.|
-|`'image_t1'`|First phase image path in change detection task.|
-|`'image_t2'`|Second phase image path in change detection task.|
-|`'mask'`|Ground-truth label path or data in image segmentation/change detection task.|
+|`'image'`|Image path or data. For change detection tasks, it refers to the first image.|
+|`'image2'`|Second image in change detection tasks.|
+|`'image_t1'`|Path of th first image in change detection tasks.|
+|`'image_t2'`|Path of the second image in change detection tasks.|
+|`'mask'`|Ground-truth label path or data in image segmentation/change detection tasks.|
 |`'aux_masks'`|Auxiliary label path or data in image segmentation/change detection tasks.|
-|`'gt_bbox'`|Detection box labeling data in object detection task.|
-|`'gt_poly'`|Polygon labeling data in object detection task.|
-|`'target'`|Target image path or data in image restoration task.|
+|`'gt_bbox'`|Bounding box annotations in object detection tasks.|
+|`'gt_poly'`|Polygon annotations in object detection tasks.|
+|`'target'`|Target image path or data in image restoration tasks.|
+
+### Construct Data Transformation Operators
+
+Please refer to [this document](../intro/transforms_cons_params_en.md).
 
-### Combined Data Transformation Operator
+### Combine Data Transformation Operators
 
 Use `paddlers.transforms.Compose` to combine a set of data transformation operators. `Compose` receives a list input when constructed. When you call `Compose`, it serially execute each data transform operators in the list. The following is an example:
 

+ 8 - 8
docs/apis/infer_cn.md

@@ -20,7 +20,7 @@ def predict(self, img_file, transforms=None):
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[tuple]` \| `tuple[str\|np.ndarray]`|输入影像对数据(NumPy数组形式)或输入影像对路径。若仅预测一个影像对,使用一个元组顺序包含第一时相影像数据/路径以及第二时相影像数据/路径。若需要一次性预测一组影像对,以列表包含这些影像对的数据或路径(每个影像对对应列表中的一个元组)。||
+|`img_file`|`list[tuple]` \| `tuple[str\|numpy.ndarray]`|输入影像对数据(NumPy数组形式)或输入影像对路径。若仅预测一个影像对,使用一个元组顺序包含第一时相影像数据/路径以及第二时相影像数据/路径。若需要一次性预测一组影像对,以列表包含这些影像对的数据或路径(每个影像对对应列表中的一个元组)。||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|对输入数据应用的数据变换算子。若为`None`,则使用训练器在验证阶段使用的数据变换算子。|`None`|
 
 返回格式:
@@ -45,7 +45,7 @@ def predict(self, img_file, transforms=None):
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|对输入数据应用的数据变换算子。若为`None`,则使用训练器在验证阶段使用的数据变换算子。|`None`|
 
 返回格式:
@@ -72,7 +72,7 @@ def predict(self, img_file, transforms=None):
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|对输入数据应用的数据变换算子。若为`None`,则使用训练器在验证阶段使用的数据变换算子。|`None`|
 
 返回格式:
@@ -101,7 +101,7 @@ def predict(self, img_file, transforms=None):
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|对输入数据应用的数据变换算子。若为`None`,则使用训练器在验证阶段使用的数据变换算子。|`None`|
 
 返回格式:
@@ -126,7 +126,7 @@ def predict(self, img_file, transforms=None):
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|输入影像数据(NumPy数组形式)或输入影像路径。若需要一次性预测一组影像,以列表包含这些影像的数据或路径(每幅影像对应列表中的一个元素)。||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|对输入数据应用的数据变换算子。若为`None`,则使用训练器在验证阶段使用的数据变换算子。|`None`|
 
 返回格式:
@@ -223,11 +223,11 @@ def predict(self,
 
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|tuple\|np.ndarray]` \| `str` \| `tuple` \| `np.ndarray`|对于场景分类、目标检测、图像复原和图像分割任务来说,该参数可为单一图像路径,或是解码后的、排列格式为[h, w, c]且具有float32类型的图像数据(表示为NumPy数组形式),或者是一组图像路径或np.ndarray对象构成的列表;对于变化检测任务来说,该参数可以为图像路径二元组(分别表示前后两个时相影像路径),或是解码后的两幅图像组成的二元组,或者是上述两种二元组之一构成的列表。||
+|`img_file`|`list[str\|tuple\|numpy.ndarray]` \| `str` \| `tuple` \| `numpy.ndarray`|对于场景分类、目标检测、图像复原和图像分割任务来说,该参数可为单一图像路径,或是解码后的、排列格式为[h, w, c]且具有float32类型的图像数据(表示为NumPy数组形式),或者是一组图像路径或`numpy.ndarray`对象构成的列表;对于变化检测任务来说,该参数可以为图像路径二元组(分别表示前后两个时相影像路径),或是解码后的两幅图像组成的二元组,或者是上述两种二元组之一构成的列表。||
 |`topk`|`int`|场景分类模型预测时使用,表示选取模型输出概率大小排名前`topk`的类别作为最终结果。|`1`|
 |`transforms`|`paddlers.transforms.Compose`\|`None`|对输入数据应用的数据变换算子。若为`None`,则使用从`model.yml`中读取的算子。|`None`|
-|`warmup_iters`|`int`|预热轮数,用于评估模型推理以及前后处理速度。若大于1,将预先重复执行`warmup_iters`次推理,而后才开始正式的预测及其速度评估。|`0`|
-|`repeats`|`int`|重复次数,用于评估模型推理以及前后处理速度。若大于1,将执行`repeats`次预测并取时间平均值。|`1`|
+|`warmup_iters`|`int`|预热轮数,用于评估模型推理以及前后处理速度。若大于`1`,将预先重复执行`warmup_iters`次推理,而后才开始正式的预测及其速度评估。|`0`|
+|`repeats`|`int`|重复次数,用于评估模型推理以及前后处理速度。若大于`1`,将执行`repeats`次预测并取时间平均值。|`1`|
 |`quiet`|`bool`|若为`True`,不打印计时信息。|`False`|
 
 `Predictor.predict()`的返回格式与相应的动态图推理API的返回格式完全相同,详情请参考[动态图推理API](#动态图推理api)。

+ 47 - 47
docs/apis/infer_en.md

@@ -1,10 +1,10 @@
 [简体中文](infer_cn.md) | English
 
-# PaddleRS Inference API Description
+# PaddleRS Inference APIs
 
-The dynamic graph inference and static graph inference of PaddleRS are provided by the trainer ([`BaseModel`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/base.py) and subclasses) and **predictor** (`paddlers.deploy.Predictor`) respectively.
+The dynamic graph inference and static graph inference of PaddleRS are provided by the trainer ([`BaseModel`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/base.py) and its subclasses) and the **predictor** (`paddlers.deploy.Predictor`), respectively.
 
-## Dynamic Graph Inference API
+## Dynamic Graph Inference APIs
 
 ### Whole Image Inference
 
@@ -20,18 +20,18 @@ Input parameters:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[tuple]` \| `tuple[str \| np.ndarray]`|Input image pair data (in NumPy array form) or input image pair path. If only one image pair is predicted, a tuple is used to sequentially contain the first phase image data/path and the second phase image data/path. If a group of image pairs need to be predicted at once, the list contains the data or paths of those image pairs (one tuple from the list for each image pair).||
+|`img_file`|`list[tuple]` \| `tuple[str \| numpy.ndarray]`|Input image pair data (in NumPy array form) or input image pair paths. If there is only one image pair, a tuple should be used to sequentially contain the first and the second images (data of paths). If a group of image pairs need to be processed, a list that contains the data or paths of those image pairs (one tuple for each image pair) should be used.||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 
 Return format:
 
-If `img_file` is a tuple, return a dictionary containing the following key-value pairs:
+If `img_file` is a tuple, returns a dictionary containing the following key-value pairs:
 
 ```
 {"label_map": category labels of model output (arranged in [h, w] format), "score_map": class probabilities of model output (arranged in format [h, w, c])}
 ```
 
-If `img_file` is a list, return an list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
+If `img_file` is a list, returns an list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
 
 #### `BaseClassifier.predict()`
 
@@ -45,20 +45,20 @@ Input parameters:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be predicted at once, the list contains the data or paths for those images (one element in the list for each image).||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be processed, the list should contain the data or paths for those images (one element for each image).||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 
 Return format:
 
-If `img_file` is a string or NumPy array, return a dictionary containing the following key-value pairs:
+If `img_file` is a string or NumPy array, returns a dictionary containing the following key-value pairs:
 
 ```
-{"class_ids_map": output category label,
- "scores_map": output category probability,
- "label_names_map": output category name}
+{"class_ids_map": output category IDs,
+ "scores_map": output category probabilities,
+ "label_names_map": output category names}
 ```
 
-If `img_file` is a list, return a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
+If `img_file` is a list, returns a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
 
 #### `BaseDetector.predict()`
 
@@ -72,22 +72,22 @@ Input parameters:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be predicted at once, the list contains the data or paths for those images (one element in the list for each image).||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be processed, the list should contain the data or paths for those images (one element for each image).||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 
 Return format:
 
-If `img_file` is a string or NumPy array, return a list with a predicted target box for each element in the list. The elements in the list are dictionaries containing the following key-value pairs:
+If `img_file` is a string or NumPy array, returns a list with a predicted target box for each element in the list. The elements in the list are dictionaries containing the following key-value pairs:
 
 ```
 {"category_id": Category ID,
  "category": Category name,
- "bbox": Target box position information, including the horizontal and vertical coordinates of the upper left corner of the target box and the width and length of the target box,  
- "score": Category confidence,
+ "bbox": Bounding box position information, including the horizontal and vertical coordinates of the upper left corner of the box and the width and length of the box,  
+ "score": Category confidence score,
  "mask": [RLE Format](https://baike.baidu.com/item/rle/366352) mask, only instance segmentation model prediction results contain this key-value pair}
 ```
 
-If `img_file` is a list, return a list as long as `img_file`, where each item is a list of dictionaries (key-value pairs shown above), corresponding in order to each element in `img_file`.
+If `img_file` is a list, returns a list as long as `img_file`, where each item is a list of dictionaries (key-value pairs shown above), corresponding in order to each element in `img_file`.
 
 #### `BaseRestorer.predict()`
 
@@ -101,18 +101,18 @@ Input parameters:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be predicted at once, the list contains the data or paths for those images (one element in the list for each image).||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be processed, the list should contain the data or paths for those images (one element for each image).||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 
 Return format:
 
-If `img_file` is a string or NumPy array, return a dictionary containing the following key-value pairs:
+If `img_file` is a string or NumPy array, returns a dictionary containing the following key-value pairs:
 
 ```
-{"res_map": restored or reconstructed images of model output (arranged in format [h, w, c])}
+{"res_map": restored or reconstructed images (arranged in [h, w, c] format)}
 ```
 
-If `img_file` is a list, return a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
+If `img_file` is a list, returns a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
 
 #### `BaseSegmenter.predict()`
 
@@ -126,28 +126,28 @@ Input parameters:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|np.ndarray]` \| `str` \| `np.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be predicted at once, the list contains the data or paths for those images (one element in the list for each image).||
+|`img_file`|`list[str\|numpy.ndarray]` \| `str` \| `numpy.ndarray`|input image data (in the form of NumPy array) or input image path. If a group of images need to be processed, the list should contain the data or paths for those images (one element for each image).||
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 
 Return format:
 
-If `img_file` is a string or NumPy array, return a dictionary containing the following key-value pairs:
+If `img_file` is a string or NumPy array, returns a dictionary containing the following key-value pairs:
 
 ```
-{"label_map": output category labels (arranged in [h, w] format), "score_map": category probabilities of model output (arranged in format [h, w, c])}
+{"label_map": predicted category labels (arranged in [h, w] format), "score_map": category probabilities of model output (arranged in [h, w, c] format)}
 ```
 
-If `img_file` is a list, return a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
+If `img_file` is a list, returns a list as long as `img_file`, where each item is a dictionary (key-value pairs shown above), corresponding in order to each element in `img_file`.
 
 ### Sliding Window Inference
 
 Considering the large-scale nature of remote sensing image, PaddleRS provides sliding window inference support for some tasks. The sliding window inference feature of PaddleRS has the following characteristics:
 
-1. In order to solve the problem of insufficient memory caused by reading the whole large image at once, PaddleRS has adopted the lazy loading memory technology, which only read and processed the image blocks in one window at a time.
-2. Users can customize the size and stride of the sliding window. Meanwhile, PaddleRS supports sliding window overlapping. For the overlapping parts between windows, PaddleRS will automatically fuse the model's predicted results.
+1. In order to solve the problem of insufficient memory caused by reading the whole large image at once, PaddleRS has adopted the lazy loading technology, which only read and process the image block in one window at a time.
+2. Users can customize the size and stride of the sliding window. Meanwhile, PaddleRS allows overlapped sliding windows. For the overlapping parts between windows, PaddleRS will automatically fuse the predicted results.
 3. The inference results can be saved in GeoTiff format, and the reading and writing of geographic transformation information and geographic projection information is supported.
 
-Currently, the image segmentation trainer ([`BaseSegmenter`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmenter.py) and subclasses) and change detection trainer ([`BaseChangeDetector`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py) and subclasses)have dynamic graph sliding window inference API. Take the API of image segmentation task as an example, the explanation is as follows:
+Currently, the image segmentation trainer ([`BaseSegmenter`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmenter.py) and its subclasses) and change detection trainer ([`BaseChangeDetector`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py) and its subclasses) have dynamic graph sliding window inference APIs. Take the API of image segmentation trainer as an example, the explanation is as follows:
 
 Interface:
 
@@ -170,23 +170,23 @@ Input parameter list:
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`img_file`|`str`|Input image path.||
-|`save_dir`|`str`|Predicted results output path.||
-|`block_size`|`list[int]` \| `tuple[int]` \| `int`|Size of the sliding window (specifying the width, height in a list or tuple, or the same width and height in an integer).||
-|`overlap`|`list[int]` \| `tuple[int]` \| `int`|Sliding step size of the sliding window (specifying the width, height in a list or tuple, or the same width and height in an integer).|`36`|
+|`save_dir`|`str`|Directory to store predicted results.||
+|`block_size`|`list[int]` \| `tuple[int]` \| `int`|Size of the sliding window (specifying the width and height in a list or tuple, or the same width and height in an integer).||
+|`overlap`|`list[int]` \| `tuple[int]` \| `int`|Sliding step size of the sliding window (specifying the width and height in a list or tuple, or the same width and height in an integer).|`36`|
 |`transforms`|`paddlers.transforms.Compose` \| `None`|Apply data transformation operators to input data. If `None`, the data transformation operators of trainer in the validation phase is used.|`None`|
 |`invalid_value`|`int`|Value used to mark invalid pixels in the output image.|`255`|
-|`merge_strategy`|`str`|Strategies used to merge sliding window overlapping areas.`'keep_first'` represents the prediction category that retains the most advanced window in the traversal order (left to right, top to bottom, column first); `'keep_last'` stands for keeping the prediction category of the last window in the traversal order;`'accum'` means to calculate the final prediction category by summing the prediction probabilities given by each window in the overlapping area. It should be noted that when dense inference with large `overlap` is carried out for large size images, the use of `'accum'` strategy may lead to longer inference time, but generally it can achieve better performance at the window boundary.|`'keep_last'`|
+|`merge_strategy`|`str`|Strategies used to merge sliding window overlapping areas.`'keep_first'` means retaining the prediction category of the first window in the traversal order (left to right, top to bottom, column first); `'keep_last'` stands for keeping the prediction category of the last window in the traversal order; `'accum'` means determining the final prediction categories in the overlapping area by summing the prediction probabilities given by each window. It should be noted that when dense inference with large `overlap` is carried out for large size images, using `'accum'` strategy may lead to longer inference time, but generally it can achieve better performance at the window boundary.|`'keep_last'`|
 |`batch_size`|`int`|Mini-batch size used for prediction.|`1`|
-|`eager_load`|`bool`|If `True`, instead of using lazy memory loading, the entire image is loaded into memory at once at the beginning of the prediction.|`False`|
-|`quiet`|`bool`|If `True`, the predicted progress is not displayed.|`False`|
+|`eager_load`|`bool`|If `True`, instead of using lazy loading, the entire image is loaded into memory at the beginning of the prediction.|`False`|
+|`quiet`|`bool`|If `True`, the predicted progress will not be displayed.|`False`|
 
-The sliding window inference API of the change detection task is similar to that of the image segmentation task, but it should be noted that the information stored in the output results, such as geographic transformation and projection, is subject to the information read from the first phase image, and the file name stored in the sliding window inference results is the same as that of the first phase image file.
+The sliding window inference API of the change detection trainer is similar to that of the image segmentation trainer, but it should be noted that the information stored in the output results, such as geographic transformation and projection, is subject to the information read from the first temporal image, and the output file name is the same as that of the first temporal image file.
 
-## Static Graph Inference API
+## Static Graph Inference APIs
 
 ### Python API
 
-[Export the model to a deployment format](https://github.com/PaddlePaddle/PaddleRS/blob/develop/deploy/export/README.md)or execution model quantization, PaddleRS provide `paddlers.deploy.Predictor` used to load the deployment model or quantization model and performing inference based on [Paddle Inference](https://www.paddlepaddle.org.cn/tutorials/projectdetail/3952715).
+First, [export the model to a deployment format](https://github.com/PaddlePaddle/PaddleRS/blob/develop/deploy/export/README.md) or execute model quantization. Then, PaddleRS provides `paddlers.deploy.Predictor` to load the deployment model or quantization model and perform inference based on the [Paddle Inference](https://www.paddlepaddle.org.cn/tutorials/projectdetail/3952715) engine.
 
 #### Initialize `Predictor`
 
@@ -194,11 +194,11 @@ The sliding window inference API of the change detection task is similar to that
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`model_dir`|`str`|Model path (must be an exported deployed or quantized model).||
+|`model_dir`|`str`|Model path (must be an exported model).||
 |`use_gpu`|`bool`|Whether to use GPU.|`False`|
 |`gpu_id`|`int`|ID of the GPU used.|`0`|
 |`cpu_thread_num`|`int`|Number of threads when inference is performed using CPUs.|`1`|
-|`use_mkl`|`bool`|Whether to use MCL-DNN compute library (This option takes effect only when inference is performed using CPUs).|`False`|
+|`use_mkl`|`bool`|Whether to use MCL-DNN library. This option takes effect only when inference is performed using CPUs.|`False`|
 |`mkl_thread_num`|`int`|Count the threads of MKL-DNN.|`4`|
 |`use_trt`|`bool`|Whether to use TensorRT.|`False`|
 |`use_glog`|`bool`|Whether to enable glog logs.|`False`|
@@ -223,15 +223,15 @@ Input parameter list:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
-|`img_file`|`list[str\|tuple\|np.ndarray]` \| `str` \| `tuple` \| `np.ndarray`|For scene classification, object detection, image restoration and image segmentation tasks, this parameter can be a single image path, or a decoded image data in [h, w, c] with a float32 type (expressed as NumPy array), or a list of image paths or np.ndarray objects. For the change detection task, the parameter can be a two-tuple of image path (representing the two time phase image paths respectively), or a two-tuple composed of two decoded images, or a list composed of one of the above two two-tuples.||
-|`topk`|`int`|It is used in scenario classification model prediction, indicating that the category with the top `topk` in the output probability of the model is selected as the final result.|`1`|
-|`transforms`|`paddlers.transforms.Compose`\|`None`|Apply data transformation operators to input data. If `None`, the operators read from 'model.yml' is used.|`None`|
-|`warmup_iters`|`int`|Number of warm-up rounds used to evaluate model inference and pre- and post-processing speed. If it is greater than 1, the `warmup_iters` inference is repeated in advance before being formally predicted and its speed assessed.|`0`|
-|`repeats`|`int`|Number of repetitions used to assess model reasoning and pre- and post-processing speed. If it is greater than 1, repeats the prediction and averages the time.|`1`|
-|`quiet`|`bool`|If `True`, no timing information is printed.|`False`|
+|`img_file`|`list[str\|tuple\|numpy.ndarray]` \| `str` \| `tuple` \| `numpy.ndarray`|For scene classification, object detection, image restoration and image segmentation tasks, this parameter can be a single image path, decoded image data in [h, w, c] format with a float32 type (expressed as NumPy array), or a list of image paths or `numpy.ndarray` objects. For the change detection task, this parameter can be a two-tuple of image paths, a two-tuple composed of two decoded images, or a list composed of one of the above two kinds of tuples.||
+|`topk`|`int`|It is used in scene classification model prediction, indicating that the categories with the top `topk` output probability should be selected as the final results.|`1`|
+|`transforms`|`paddlers.transforms.Compose`\|`None`|Apply data transformation operators to input data. If `None`, the operators read from `model.yml` is used.|`None`|
+|`warmup_iters`|`int`|Number of warm-up rounds used to evaluate model inference and pre- and post-processing speed. If it is greater than `1`, the inference will first be repeated for `warmup_iters` iterations, before the speed is accessed.|`0`|
+|`repeats`|`int`|Number of repetitions used to assess model reasoning and pre- and post-processing speed. If it is greater than `1`, repeats the prediction and averages the time.|`1`|
+|`quiet`|`bool`|If `True`, no timing information will be printed.|`False`|
 
-`Predictor.predict()`returns exactly the same format as the graph inference API. For details, refer to[Dynamic Graph Inference API](#Dynamic Graph Inference API).
+`Predictor.predict()`returns exactly the same format as the graph inference API. For details, please refer to [Dynamic Graph Inference API](#dynamic-graph-inference-apis).
 
 ### `Predictor.slider_predict()`
 
-Implements the sliding window inference function. It is used in the same way as `BaseSegmenter` and `slider_predict()` of `BaseChangeDetector`.
+Implements the sliding window inference function. It is used in the same way as `slider_predict()` of `BaseSegmenter` and `BaseChangeDetector`.

+ 13 - 13
docs/apis/train_cn.md

@@ -13,34 +13,34 @@
 - 一般支持设置`num_classes`、`use_mixed_loss`以及`in_channels`参数,分别表示模型输出类别数、是否使用预置的混合损失以及输入通道数。部分子类如`DSIFN`暂不支持对`in_channels`参数的设置。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - 可通过`losses`参数指定模型训练时使用的损失函数。`losses`需为一个字典,其中`'types'`键和`'coef'`键对应的值为两个等长的列表,分别表示损失函数对象(一个可调用对象)和损失函数的权重。例如:`losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`在训练过程中将等价于计算如下损失函数:`1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`,其中`logits`和`labels`分别是模型输出和真值标签。
-- 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/cd)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py)。
+- 不同的子类支持与模型相关的输入参数,详情请参考[此文档](../intro/model_cons_params_cn.md)。
 
 ### 初始化`BaseClassifier`子类对象
 
 - 一般支持设置`num_classes`和`use_mixed_loss`参数,分别表示模型输出类别数以及是否使用预置的混合损失。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - 可通过`losses`参数指定模型训练时使用的损失函数,传入实参需为`paddlers.models.clas_losses.CombinedLoss`类型对象。
-- 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/clas)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py)。
+- 不同的子类支持与模型相关的输入参数,详情请参考[此文档](../intro/model_cons_params_cn.md)。
 
 ### 初始化`BaseDetector`子类对象
 
 - 一般支持设置`num_classes`和`backbone`参数,分别表示模型输出类别数以及所用的骨干网络类型。相比其它任务,目标检测任务的训练器支持设置的初始化参数较多,囊括网络结构、损失函数、后处理策略等方面。
 - 与分割、分类、变化检测等任务不同,检测任务不支持通过`losses`参数指定损失函数。不过对于部分训练器如`PPYOLO`,可通过`use_iou_loss`等参数定制损失函数。
-- 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/det)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/object_detector.py)。
+- 不同的子类支持与模型相关的输入参数,详情请参考[此文档](../intro/model_cons_params_cn.md)。
 
 ### 初始化`BaseRestorer`子类对象
 
 - 一般支持设置`sr_factor`参数,表示超分辨率倍数;对于不支持超分辨率重建任务的模型,`sr_factor`设置为`None`。
 - 可通过`losses`参数指定模型训练时使用的损失函数,传入实参需为可调用对象或字典。手动指定的`losses`与子类的`default_loss()`方法返回值必须具有相同的格式。
 - 可通过`min_max`参数指定模型输入、输出的数值范围;若为`None`,则使用类默认的数值范围。
-- 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/res)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/restorer.py)。
+- 不同的子类支持与模型相关的输入参数,详情请参考[此文档](../intro/model_cons_params_cn.md)。
 
 ### 初始化`BaseSegmenter`子类对象
 
 - 一般支持设置`in_channels`、`num_classes`以及`use_mixed_loss`参数,分别表示输入通道数、输出类别数以及是否使用预置的混合损失。
 - `use_mixed_loss`参将在未来被弃用,因此不建议使用。
 - 可通过`losses`参数指定模型训练时使用的损失函数。`losses`需为一个字典,其中`'types'`键和`'coef'`键对应的值为两个等长的列表,分别表示损失函数对象(一个可调用对象)和损失函数的权重。例如:`losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`在训练过程中将等价于计算如下损失函数:`1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`,其中`logits`和`labels`分别是模型输出和真值标签。
-- 不同的子类支持与模型相关的输入参数,详情请参考[模型定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/seg)和[训练器定义](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmentor.py)。
+- 不同的子类支持与模型相关的输入参数,详情请参考[此文档](../intro/model_cons_params_cn.md)。
 
 ## `train()`
 
@@ -164,7 +164,7 @@ def train(self,
 |-------|----|--------|-----|
 |`num_epochs`|`int`|训练的epoch数目。||
 |`train_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset` |训练数据集。||
-|`train_batch_size`|`int`|训练时使用的batch size(多卡训练时,为所有设备合计batch size)。|`64`|
+|`train_batch_size`|`int`|训练时使用的batch size。|`64`|
 |`eval_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset` \| `None`|验证数据集。|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|训练时使用的优化器。若为`None`,则使用默认定义的优化器。|`None`|
 |`save_interval_epochs`|`int`|训练时存储模型的间隔epoch数。|`1`|
@@ -197,7 +197,7 @@ def train(self,
           save_interval_epochs=1,
           log_interval_steps=2,
           save_dir='output',
-          pretrain_weights='CITYSCAPES',
+          pretrain_weights=None,
           learning_rate=0.01,
           lr_decay_power=0.9,
           early_stop=False,
@@ -218,7 +218,7 @@ def train(self,
 |`save_interval_epochs`|`int`|训练时存储模型的间隔epoch数。|`1`|
 |`log_interval_steps`|`int`|训练时打印日志的间隔step数(即迭代数)。|`2`|
 |`save_dir`|`str`|存储模型的路径。|`'output'`|
-|`pretrain_weights`|`str` \| `None`|预训练权重的名称/路径。若为`None`,则不适用预训练权重。|`'CITYSCAPES'`|
+|`pretrain_weights`|`str` \| `None`|预训练权重的名称/路径。若为`None`,则不适用预训练权重。|`None`|
 |`learning_rate`|`float`|训练时使用的学习率大小,适用于默认优化器。|`0.01`|
 |`lr_decay_power`|`float`|学习率衰减系数,适用于默认优化器。|`0.9`|
 |`early_stop`|`bool`|训练过程是否启用早停策略。|`False`|
@@ -284,7 +284,7 @@ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.CDDataset`|评估数据集。||
-|`batch_size`|`int`|评估时使用的batch size(多卡训练时,为所有设备合计batch size)。|`1`|
+|`batch_size`|`int`|评估时使用的batch size(多卡评估时,为所有设备合计batch size)。|`1`|
 |`return_details`|`bool`|是否返回详细信息。|`False`|
 
 当`return_details`为`False`(默认行为)时,输出为一个`collections.OrderedDict`对象。对于二类变化检测任务,输出包含如下键值对:
@@ -322,7 +322,7 @@ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.ClasDataset`|评估数据集。||
-|`batch_size`|`int`|评估时使用的batch size(多卡训练时,为所有设备合计batch size)。|`1`|
+|`batch_size`|`int`|评估时使用的batch size(多卡评估时,为所有设备合计batch size)。|`1`|
 |`return_details`|`bool`|*当前版本请勿手动设置此参数。*|`False`|
 
 输出为一个`collections.OrderedDict`对象,包含如下键值对:
@@ -349,7 +349,7 @@ def evaluate(self,
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset`|评估数据集。||
-|`batch_size`|`int`|评估时使用的batch size(多卡训练时,为所有设备合计batch size)。|`1`|
+|`batch_size`|`int`|评估时使用的batch size(多卡评估时,为所有设备合计batch size)。|`1`|
 |`metric`|`str` \| `None`|评价指标,可以为`'VOC'`、`COCO`或`None`。若为`Nnoe`,则根据数据集格式自动确定使用的评价指标。|`None`|
 |`return_details`|`bool`|是否返回详细信息。|`False`|
 
@@ -380,7 +380,7 @@ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.ResDataset`|评估数据集。||
-|`batch_size`|`int`|评估时使用的batch size(多卡训练时,为所有设备合计batch size)。|`1`|
+|`batch_size`|`int`|评估时使用的batch size(多卡评估时,为所有设备合计batch size)。|`1`|
 |`return_details`|`bool`|*当前版本请勿手动设置此参数。*|`False`|
 
 输出为一个`collections.OrderedDict`对象,包含如下键值对:
@@ -403,7 +403,7 @@ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 |参数名称|类型|参数说明|默认值|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.SegDataset`|评估数据集。||
-|`batch_size`|`int`|评估时使用的batch size(多卡训练时,为所有设备合计batch size)。|`1`|
+|`batch_size`|`int`|评估时使用的batch size(多卡评估时,为所有设备合计batch size)。|`1`|
 |`return_details`|`bool`|是否返回详细信息。|`False`|
 
 当`return_details`为`False`(默认行为)时,输出为一个`collections.OrderedDict`对象,包含如下键值对:

+ 106 - 107
docs/apis/train_en.md

@@ -1,52 +1,52 @@
 [简体中文](train_cn.md) | English
 
-# PaddleRS Training API Description
+# PaddleRS Training APIs
 
-**Trainers** (or model trainers) encapsulate model training, validation, quantization, and dynamic graph inference, defined in files of `paddlers/tasks/` directory. For user convenience, PaddleRS provides trainers that inherits from the parent class [`BaseModel`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/base.py) for all supported models, and provides several apis externally. The types of trainers corresponding to change detection, scene classification, target detection, image restoration and image segmentation tasks are respectively `BaseChangeDetector`、`BaseClassifier`、`BaseDetector`、`BaseRestorer` and `BaseSegmenter`。This document describes the initialization function of the trainer and `train()`、`evaluate()` API。
+**Trainers** (or model trainers) encapsulate model training, validation, quantization, and dynamic graph inference, defined in files of `paddlers/tasks/` directory. For user convenience, PaddleRS provides trainers that inherit from the parent class [`BaseModel`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/base.py) for all supported models, and provides several APIs. The types of trainers corresponding to change detection, scene classification, target detection, image restoration, and image segmentation tasks are respectively `BaseChangeDetector`, `BaseClassifier`, `BaseDetector`, `BaseRestorer`, and `BaseSegmenter`. This document describes how to initialize the trainers as well as how to use the APIs.
 
-## Initialize the Trainer
+## Initialize Trainers
 
-All trainers support default parameter construction (that is, no parameters are passed in when the object is constructed), in which case the constructed trainer object applies to three-channel RGB data.
+All trainers support construction with default parameters (that is, no parameters are passed in when the object is constructed), in which case the constructed trainer object applies to three-channel RGB data.
 
-### Initialize `BaseChangeDetector` Subclass Object
+### Initialize `BaseChangeDetector` Objects
 
-- The `num_classes`、`use_mixed_loss` and `in_channels` parameters are generally supported, indicating the number of model output categories, whether to use preset mixing losses, and the number of input channels, respectively. Some subclasses, such as `DSIFN`, do not yet support `in_channels`.
+- The `num_classes`, `use_mixed_loss`, `in_channels` parameters are generally supported, indicating the number of model output categories, whether to use pre-defined mixed losses, and the number of input channels, respectively. Some subclasses, such as `DSIFN`, do not yet support `in_channels`.
 - `use_mixed_loss` will be deprecated in the future, so it is not recommended.
-- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a dictionary, where the values for the keys `types` and `coef` are two equal-length lists representing the loss function object (a callable object) and the weight of the loss function, respectively. For example: `losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`. It is equivalent to calculating the following loss function in the training process: `1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`, where `logits` and `labels` are model output and ground-truth labels, respectively.
-- Different subclasses support model-related input parameters. For details, you can refer to [model definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/cd) and [trainer definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/change_detector.py).
+- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a dictionary, where the values for the keys `types` and `coef` are two equal-length lists representing the loss function object (a callable object) and the weight of the loss function, respectively. For example: `losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}` is equivalent to calculating the following loss function in the training process: `1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`, where `logits` and `labels` are model output and ground-truth labels, respectively.
+- Different subclasses support model-related input parameters. For details, you can refer to [this document](../intro/model_cons_params_en.md).
 
-### Initialize `BaseClassifier` Subclass Object
+### Initialize `BaseClassifier` Objects
 
-- The `num_classes` and `use_mixed_loss` parameters are generally supported, indicating the number of model output categories, whether to use preset mixing losses.
+- The `num_classes` and `use_mixed_loss` parameters are generally supported, indicating the number of model output categories, whether to use pre-defined mixed losses.
 - `use_mixed_loss` will be deprecated in the future, so it is not recommended.
 - Specify the loss function used during model training through the `losses` parameter. The passed argument needs to be an object of type `paddlers.models.clas_losses.CombinedLoss`.
-- Different subclasses support model-related input parameters. For details, you can refer to [model definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/clas) and [trainer definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py).
+- Different subclasses support model-related input parameters. For details, you can refer to [this document](../intro/model_cons_params_en.md).
 
-### Initialize `BaseDetector` Subclass Object
+### Initialize `BaseDetector` Objects
 
-- Generally, the `num_classes` and `backbone` parameters can be set to indicate the number of output categories of the model and the type of backbone network used, respectively. Compared with other tasks, the trainer of object detection task supports more initialization parameters, including network structure, loss function, post-processing strategy and so on.
-- Different from tasks such as segmentation, classification and change detection, detection tasks do not support the loss function specified through the `losses` parameter. However, for some trainers such as `PPYOLO`, the loss function can be customized by `use_iou_loss` and other parameters.
-- Different subclasses support model-related input parameters. For details, you can refer to [model definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/det) and [trainer definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/object_detector.py).
+- Generally, the `num_classes` and `backbone` parameters can be set to indicate the number of output categories of the model and the type of backbone network used, respectively. Compared with other tasks, the trainer of object detection task supports more initialization parameters, including network structures, loss functions, post-processing strategies and so on.
+- Different from tasks such as segmentation, classification and change detection, object detection trainers do not support specifying loss function through the `losses` parameter. However, for some trainers such as `PPYOLO`, the loss function can be customized by `use_iou_loss` and other parameters.
+- Different subclasses support model-related input parameters. For details, you can refer to [this document](../intro/model_cons_params_en.md).
 
-### Initialize `BaseRestorer` Subclass Object
+### Initialize `BaseRestorer` Objects
 
-- Generally support setting `sr_factor` parameter, representing the scaling factor in image super resolution; for models that do not support super resolution rebuild tasks, `sr_factor` is set to `None`.
-- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a callable object or dictionary. `losses` specified manually must have the same format as the the subclass `default_loss()` method.
+- Generally support setting the `sr_factor` parameter, representing the scaling factor in image super resolution tasks. For models that do not support super resolution reconstruction tasks, `sr_factor` should be set to `None`.
+- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a callable object or dictionary. The specified `losses` must have the same format as the return value of the `default_loss()` method.
 - The `min_max` parameter can specify the numerical range of model input and output. If `None`, the default range of values for the class is used.
-- Different subclasses support model-related input parameters. For details, you can refer to [model definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/res) and [trainer definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/restorer.py).
+- Different subclasses support model-related input parameters. For details, you can refer to [this document](../intro/model_cons_params_en.md).
 
-### Initialize `BaseSegmenter` Subclass Object
+### Initialize `BaseSegmenter` Objects
 
-- The parameters `in_channels`, `num_classes`, and  `use_mixed_loss` are generally supported, indicating the number of input channels, the number of output categories, and whether the preset mixing loss is used.
+- The parameters `in_channels`, `num_classes`, and  `use_mixed_loss` are generally supported, indicating the number of input channels, the number of output categories, and whether to use the pre-defined mixed losses.
 - `use_mixed_loss` will be deprecated in the future, so it is not recommended.
-- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a dictionary, where the values for the keys `types` and `coef` are two equal-length lists representing the loss function object (a callable object) and the weight of the loss function, respectively. For example: `losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}`. It is equivalent to calculating the following loss function in the training process: `1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`, where `logits` and `labels` are model output and ground-truth labels, respectively.
-- Different subclasses support model-related input parameters. For details, you can refer to [model definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/rs_models/seg) and [trainer definitions](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/segmentor.py).
+- Specify the loss function used during model training through the `losses` parameter. `losses` needs to be a dictionary, where the values for the keys `types` and `coef` are two equal-length lists representing the loss function object (a callable object) and the weight of the loss function, respectively. For example: `losses={'types': [LossType1(), LossType2()], 'coef': [1.0, 0.5]}` is equivalent to calculating the following loss function in the training process: `1.0*LossType1()(logits, labels)+0.5*LossType2()(logits, labels)`, where `logits` and `labels` are model output and ground-truth labels, respectively.
+- Different subclasses support model-related input parameters. For details, you can refer to [this document](../intro/model_cons_params_en.md).
 
 ## `train()`
 
 ### `BaseChangeDetector.train()`
 
-Interface format:
+Interface:
 
 ```python
 def train(self,
@@ -67,7 +67,7 @@ def train(self,
           resume_checkpoint=None):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
@@ -76,20 +76,20 @@ The meanings of each parameter are as follows:
 |`train_batch_size`|`int`|Batch size used during training.|`2`|
 |`eval_dataset`|`paddlers.datasets.CDDataset` \| `None`|Validation dataset.|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|Optimizer used during training. If `None`, the optimizer defined by default is used.|`None`|
-|`save_interval_epochs`|`int`|Number of intervals epochs of the model stored during training.|`1`|
-|`log_interval_steps`|`int`|Number of steps (i.e., the number of iterations) between printing logs during training.|`2`|
-|`save_dir`|`str`|Path to save the model.|`'output'`|
-|`pretrain_weights`|`str` \| `None`|Name/path of the pre-training weight. If `None`, the pre-training weight is not used.|`None`|
+|`save_interval_epochs`|`int`|Number of intervals (in epochs) to evaluate and store models during training.|`1`|
+|`log_interval_steps`|`int`|Number of interval steps (i.e., the number of iterations) to print logs during training.|`2`|
+|`save_dir`|`str`|Path to save checkpoints.|`'output'`|
+|`pretrain_weights`|`str` \| `None`|Name/path of the pretrained weights. If `None`, no pretrained weight is used.|`None`|
 |`learning_rate`|`float`|Learning rate used during training, for default optimizer.|`0.01`|
 |`lr_decay_power`|`float`|Learning rate attenuation coefficient, for default optimizer.|`0.9`|
-|`early_stop`|`bool`|Whether the early stop policy is enabled during training.|`False`|
-|`early_stop_patience`|`int`|`patience` parameters when the early stop policy is enabled (refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py)).|`5`|
-|`use_vdl`|`bool`|Whether to enable VisualDL log.|`True`|
-|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports continuing training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
+|`early_stop`|`bool`|Whether to enable the early stopping policy during training.|`False`|
+|`early_stop_patience`|`int`|`patience` parameter when the early stopping policy is enabled. Please refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py) for more details.|`5`|
+|`use_vdl`|`bool`|Whether to enable VisualDL.|`True`|
+|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports resuming training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
 
 ### `BaseClassifier.train()`
 
-Interface format:
+Interface:
 
 ```python
 def train(self,
@@ -110,7 +110,7 @@ def train(self,
           resume_checkpoint=None):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
@@ -119,20 +119,20 @@ The meanings of each parameter are as follows:
 |`train_batch_size`|`int`|Batch size used during training.|`2`|
 |`eval_dataset`|`paddlers.datasets.ClasDataset` \| `None`|Validation dataset.|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|Optimizer used during training. If `None`, the optimizer defined by default is used.|`None`|
-|`save_interval_epochs`|`int`|Number of intervals epochs of the model stored during training.|`1`|
-|`log_interval_steps`|`int`|Number of steps (i.e., the number of iterations) between printing logs during training.|`2`|
-|`save_dir`|`str`|Path to save the model.|`'output'`|
-|`pretrain_weights`|`str` \| `None`|Name/path of the pre-training weight. If `None`, the pre-training weight is not used.|`'IMAGENET'`|
+|`save_interval_epochs`|`int`|Number of intervals (in epochs) to evaluate and store models during training.|`1`|
+|`log_interval_steps`|`int`|Number of interval steps (i.e., the number of iterations) to print logs during training.|`2`|
+|`save_dir`|`str`|Path to save checkpoints.|`'output'`|
+|`pretrain_weights`|`str` \| `None`|Name/path of the pretrained weights. If `None`, no pretrained weight is used.|`'IMAGENET'`|
 |`learning_rate`|`float`|Learning rate used during training, for default optimizer.|`0.1`|
 |`lr_decay_power`|`float`|Learning rate attenuation coefficient, for default optimizer.|`0.9`|
-|`early_stop`|`bool`|Whether the early stop policy is enabled during training.|`False`|
-|`early_stop_patience`|`int`|`patience` parameters when the early stop policy is enabled (refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py)).|`5`|
-|`use_vdl`|`bool`|Whether to enable VisualDL log.|`True`|
-|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports continuing training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
+|`early_stop`|`bool`|Whether to enable the early stopping policy during training.|`False`|
+|`early_stop_patience`|`int`|`patience` parameter when the early stopping policy is enabled. Please refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py) for more details.|`5`|
+|`use_vdl`|`bool`|Whether to enable VisualDL.|`True`|
+|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports resuming training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
 
 ### `BaseDetector.train()`
 
-Interface format:
+Interface:
 
 ```python
 def train(self,
@@ -158,34 +158,34 @@ def train(self,
           resume_checkpoint=None):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`num_epochs`|`int`|Number of epochs to train.||
 |`train_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset` |Training dataset.||
-|`train_batch_size`|`int`|Batch size used during training.(For multi-card training, total batch size for all equipment).|`64`|
+|`train_batch_size`|`int`|Batch size used during training.|`64`|
 |`eval_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset` \| `None`|Validation dataset.|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|Optimizer used during training. If `None`, the optimizer defined by default is used.|`None`|
-|`save_interval_epochs`|`int`|Number of intervals epochs of the model stored during training.|`1`|
-|`log_interval_steps`|`int`|Number of steps (i.e., the number of iterations) between printing logs during training.|`10`|
-|`save_dir`|`str`|Path to save the model.|`'output'`|
-|`pretrain_weights`|`str` \| `None`|Name/path of the pre-training weight. If `None`, the pre-training weight is not used.|`'IMAGENET'`|
+|`save_interval_epochs`|`int`|Number of intervals (in epochs) to evaluate and store models during training.|`1`|
+|`log_interval_steps`|`int`|Number of interval steps (i.e., the number of iterations) to print logs during training.|`10`|
+|`save_dir`|`str`|Path to save checkpoints.|`'output'`|
+|`pretrain_weights`|`str` \| `None`|Name/path of the pretrained weights. If `None`, no pretrained weight is used.|`'IMAGENET'`|
 |`learning_rate`|`float`|Learning rate used during training, for default optimizer.|`0.001`|
 |`warmup_steps`|`int`|Number of [warm-up](https://www.mdpi.com/2079-9292/10/16/2029/htm) rounds used by the default optimizer.|`0`|
-|`warmup_start_lr`|`int`|Default initial learning rate used by the warm-up phase of the optimizer.|`0`|
-|`lr_decay_epochs`|`list` \| `tuple`|Milestones of learning rate decline of the default optimizer, in terms of epoch. That is, which epoch the decay of the learning rate occurs.|`(216, 243)`|
+|`warmup_start_lr`|`int`|Default initial learning rate used in the warm-up phase of the optimizer.|`0`|
+|`lr_decay_epochs`|`list` \| `tuple`|Milestones of learning rate decline of the default optimizer, in terms of epochs. That is, which epoch the decay of the learning rate occurs.|`(216, 243)`|
 |`lr_decay_gamma`|`float`|Learning rate attenuation coefficient, for default optimizer.|`0.1`|
-|`metric`|`str` \| `None`|Evaluation metrics, can be `'VOC'`、`COCO` or `None`. If `None`, the evaluation index to be used is automatically determined according to the format of the dataset.|`None`|
-|`use_ema`|`bool`|Whether to enable [exponential moving average strategy](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/models/ppdet/optimizer.py) to update model weight parameters.|`False`|
-|`early_stop`|`bool`|Whether the early stop policy is enabled during training.|`False`|
-|`early_stop_patience`|`int`|`patience` parameters when the early stop policy is enabled (refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py)).|`5`|
-|`use_vdl`|`bool`|Whether to enable VisualDL log.|`True`|
-|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports continuing training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
+|`metric`|`str` \| `None`|Evaluation metrics, which can be `'VOC'`, `COCO`, or `None`. If `None`, the evaluation metrics will be automatically determined according to the format of the dataset.|`None`|
+|`use_ema`|`bool`|Whether to enable [exponential moving average strategy](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/models/ppdet/optimizer.py) to update model weights.|`False`|
+|`early_stop`|`bool`|Whether to enable the early stopping policy during training.|`False`|
+|`early_stop_patience`|`int`|`patience` parameter when the early stopping policy is enabled. Please refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py) for more details.|`5`|
+|`use_vdl`|`bool`|Whether to enable VisualDL.|`True`|
+|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports resuming training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
 
 ### `BaseRestorer.train()`
 
-Interface format:
+Interface:
 
 ```python
 def train(self,
@@ -197,7 +197,7 @@ def train(self,
           save_interval_epochs=1,
           log_interval_steps=2,
           save_dir='output',
-          pretrain_weights='CITYSCAPES',
+          pretrain_weights=None,
           learning_rate=0.01,
           lr_decay_power=0.9,
           early_stop=False,
@@ -206,7 +206,7 @@ def train(self,
           resume_checkpoint=None):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
@@ -215,20 +215,20 @@ The meanings of each parameter are as follows:
 |`train_batch_size`|`int`|Batch size used during training.|`2`|
 |`eval_dataset`|`paddlers.datasets.ResDataset` \| `None`|Validation dataset.|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|Optimizer used during training. If `None`, the optimizer defined by default is used.|`None`|
-|`save_interval_epochs`|`int`|Number of intervals epochs of the model stored during training.|`1`|
-|`log_interval_steps`|`int`|Number of steps (i.e., the number of iterations) between printing logs during training.|`2`|
-|`save_dir`|`str`|Path to save the model.|`'output'`|
-|`pretrain_weights`|`str` \| `None`|Name/path of the pre-training weight. If `None`, the pre-training weight is not used.|`'CITYSCAPES'`|
+|`save_interval_epochs`|`int`|Number of intervals (in epochs) to evaluate and store models during training.|`1`|
+|`log_interval_steps`|`int`|Number of interval steps (i.e., the number of iterations) to print logs during training.|`2`|
+|`save_dir`|`str`|Path to save checkpoints.|`'output'`|
+|`pretrain_weights`|`str` \| `None`|Name/path of the pretrained weights. If `None`, no pretrained weight is used.|`None`|
 |`learning_rate`|`float`|Learning rate used during training, for default optimizer.|`0.01`|
 |`lr_decay_power`|`float`|Learning rate attenuation coefficient, for default optimizer.|`0.9`|
-|`early_stop`|`bool`|Whether the early stop policy is enabled during training.|`False`|
-|`early_stop_patience`|`int`|`patience` parameters when the early stop policy is enabled (refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py)).|`5`|
-|`use_vdl`|`bool`|Whether to enable VisualDL log.|`True`|
-|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports continuing training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
+|`early_stop`|`bool`|Whether to enable the early stopping policy during training.|`False`|
+|`early_stop_patience`|`int`|`patience` parameter when the early stopping policy is enabled. Please refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py) for more details.|`5`|
+|`use_vdl`|`bool`|Whether to enable VisualDL.|`True`|
+|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports resuming training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
 
 ### `BaseSegmenter.train()`
 
-Interface format:
+Interface:
 
 ```python
 def train(self,
@@ -249,7 +249,7 @@ def train(self,
           resume_checkpoint=None):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
@@ -258,36 +258,36 @@ The meanings of each parameter are as follows:
 |`train_batch_size`|`int`|Batch size used during training.|`2`|
 |`eval_dataset`|`paddlers.datasets.SegDataset` \| `None`|Validation dataset.|`None`|
 |`optimizer`|`paddle.optimizer.Optimizer` \| `None`|Optimizer used during training. If `None`, the optimizer defined by default is used.|`None`|
-|`save_interval_epochs`|`int`|Number of intervals epochs of the model stored during training.|`1`|
-|`log_interval_steps`|`int`|Number of steps (i.e., the number of iterations) between printing logs during training.|`2`|
-|`save_dir`|`str`|Path to save the model.|`'output'`|
-|`pretrain_weights`|`str` \| `None`|Name/path of the pre-training weight. If `None`, the pre-training weight is not used.|`'CITYSCAPES'`|
+|`save_interval_epochs`|`int`|Number of intervals (in epochs) to evaluate and store models during training.|`1`|
+|`log_interval_steps`|`int`|Number of interval steps (i.e., the number of iterations) to print logs during training.|`2`|
+|`save_dir`|`str`|Path to save checkpoints.|`'output'`|
+|`pretrain_weights`|`str` \| `None`|Name/path of the pretrained weights. If `None`, no pretrained weight is used.|`'CITYSCAPES'`|
 |`learning_rate`|`float`|Learning rate used during training, for default optimizer.|`0.01`|
 |`lr_decay_power`|`float`|Learning rate attenuation coefficient, for default optimizer.|`0.9`|
-|`early_stop`|`bool`|Whether the early stop policy is enabled during training.|`False`|
-|`early_stop_patience`|`int`|`patience` parameters when the early stop policy is enabled (refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py)).|`5`|
-|`use_vdl`|`bool`|Whether to enable VisualDL log.|`True`|
-|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports continuing training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
+|`early_stop`|`bool`|Whether to enable the early stopping policy during training.|`False`|
+|`early_stop_patience`|`int`|`patience` parameter when the early stopping policy is enabled. Please refer to [`EarlyStop`](https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/utils/utils.py) for more details.|`5`|
+|`use_vdl`|`bool`|Whether to enable VisualDL.|`True`|
+|`resume_checkpoint`|`str` \| `None`|Checkpoint path. PaddleRS supports resuming training from checkpoints (including model weights and optimizer weights stored during previous training), but note that `resume_checkpoint` and `pretrain_weights` must not be set to values other than `None` at the same time.|`None`|
 
 ## `evaluate()`
 
 ### `BaseChangeDetector.evaluate()`
 
-Interface format:
+Interface:
 
 ```python
 def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.CDDataset`|Validation dataset.||
-|`batch_size`|`int`|Batch size used in the evaluation (for multi-card training, the batch size is totaled for all devices).|`1`|
+|`batch_size`|`int`|Batch size used in evaluation (for multi-card evaluation, this is the total batch size for all devices).|`1`|
 |`return_details`|`bool`|Whether to return detailed information.|`False`|
 
-If `return_details` is `False`(default), output a `collections.OrderedDict` object. For the 2-category change detection task, the output contains the following key-value pairs:
+If `return_details` is `False` (default), outputs a `collections.OrderedDict` object. For the binary change detection task, the output contains the following key-value pairs:
 
 ```
 {"iou": the IoU metric of the change class,
@@ -296,7 +296,7 @@ If `return_details` is `False`(default), output a `collections.OrderedDict` obje
  "kappa": kappa coefficient}
 ```
 
-For the multi-category change detection task, the output contains the following key-value pairs:
+For the multi-class change detection task, the output contains the following key-value pairs:
 
 ```
 {"miou": mIoU metric,
@@ -307,27 +307,26 @@ For the multi-category change detection task, the output contains the following
  "category_F1score": F1 score of each category}
 ```
 
-If `return_details` is `True`, return a binary set of two dictionaries in which the first element is the metric mentioned above and the second element is a dictionary containing only one key, and the value of the `'confusion_matrix'` key is the confusion matrix stored in the python build-in list.
-
+If `return_details` is `True`, returns two dictionaries. The first dictionary is the metrics mentioned above, and the second one is a dictionary containing `'confusion_matrix'` (which is the confusion matrix).
 
 
 ### `BaseClassifier.evaluate()`
 
-Interface format:
+Interface:
 
 ```python
 def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.ClasDataset`|Validation dataset.||
-|`batch_size`|`int`|Batch size used in the evaluation (for multi-card training, the batch size is totaled for all devices).|`1`|
-|`return_details`|`bool`|*Do not manually set this parameter in the current version.*|`False`|
+|`batch_size`|`int`|Batch size used in evaluation (for multi-card evaluation, this is the total batch size for all devices).|`1`|
+|`return_details`|`bool`|*Do not manually set this parameter in current version.*|`False`|
 
-output a `collections.OrderedDict` object, including the following key-value pairs:
+Outputs a `collections.OrderedDict` object, including the following key-value pairs:
 
 ```
 {"top1": top1 accuracy,
@@ -336,7 +335,7 @@ output a `collections.OrderedDict` object, including the following key-value pai
 
 ### `BaseDetector.evaluate()`
 
-Interface format:
+Interface:
 
 ```python
 def evaluate(self,
@@ -346,22 +345,22 @@ def evaluate(self,
              return_details=False):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.COCODetDataset` \| `paddlers.datasets.VOCDetDataset`|Validation dataset.||
-|`batch_size`|`int`|Batch size used in the evaluation (for multi-card training, the batch size is totaled for all devices).|`1`|
-|`metric`|`str` \| `None`|Evaluation metrics, can be `'VOC'`、`COCO` or `None`. If `None`, the evaluation index to be used is automatically determined according to the format of the dataset.|`None`|
+|`batch_size`|`int`|Batch size used in evaluation (for multi-card evaluation, this is the total batch size for all devices).|`1`|
+|`metric`|`str` \| `None`|Evaluation metrics, which can be `'VOC'`, `COCO`, or `None`. If `None`, the evaluation metrics will be automatically determined according to the format of the dataset.|`None`|
 |`return_details`|`bool`|Whether to return detailed information.|`False`|
 
-If `return_details` is `False`(default), return a `collections.OrderedDict` object, including the following key-value pairs:
+If `return_details` is `False` (default), returns a `collections.OrderedDict` object, including the following key-value pairs:
 
 ```
 {"bbox_mmap": mAP of predicted result}
 ```
 
-If `return_details` is `True`, return a binary set of two dictionaries, where the first dictionary is the above evaluation index and the second dictionary contains the following three key-value pairs:
+If `return_details` is `True`, returns two dictionaries. The first dictionary is the above evaluation metrics and the second dictionary contains the following three key-value pairs:
 
 ```
 {"gt": dataset annotation information,
@@ -371,21 +370,21 @@ If `return_details` is `True`, return a binary set of two dictionaries, where th
 
 ### `BaseRestorer.evaluate()`
 
-Interface format:
+Interface:
 
 ```python
 def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.ResDataset`|Validation dataset.||
-|`batch_size`|`int`|Batch size used in the evaluation (for multi-card training, the batch size is totaled for all devices).|`1`|
-|`return_details`|`bool`|*Do not manually set this parameter in the current version.*|`False`|
+|`batch_size`|`int`|Batch size used in evaluation (for multi-card evaluation, this is the total batch size for all devices).|`1`|
+|`return_details`|`bool`|*Do not manually set this parameter in current version.*|`False`|
 
-Output a `collections.OrderedDict` object, including the following key-value pairs:
+Outputs a `collections.OrderedDict` object, including the following key-value pairs:
 
 ```
 {"psnr": PSNR metric,
@@ -394,21 +393,21 @@ Output a `collections.OrderedDict` object, including the following key-value pai
 
 ### `BaseSegmenter.evaluate()`
 
-Interface format:
+Interface:
 
 ```python
 def evaluate(self, eval_dataset, batch_size=1, return_details=False):
 ```
 
-The meanings of each parameter are as follows:
+The meaning of each parameter is as follows:
 
 |Parameter Name|Type|Parameter Description|Default Value|
 |-------|----|--------|-----|
 |`eval_dataset`|`paddlers.datasets.SegDataset`|Validation dataset.||
-|`batch_size`|`int`|Batch size used in the evaluation (for multi-card training, the batch size is totaled for all devices).|`1`|
+|`batch_size`|`int`|Batch size used in evaluation (for multi-card evaluation, this is the total batch size for all devices).|`1`|
 |`return_details`|`bool`|Whether to return detailed information.|`False`|
 
-If `return_details` is `False`(default), return a `collections.OrderedDict` object, including the following key-value pairs:
+If `return_details` is `False` (default), returns a `collections.OrderedDict` object, including the following key-value pairs:
 
 ```
 {"miou": mIoU metric,
@@ -419,4 +418,4 @@ If `return_details` is `False`(default), return a `collections.OrderedDict` obje
  "category_F1score": F1 score of each category}
 ```
 
-If `return_details` is `True`, return a binary set of two dictionaries in which the first element is the metric mentioned above and the second element is a dictionary containing only one key, and the value of the `'confusion_matrix'` key is the confusion matrix stored in the python build-in list.
+If `return_details` is `True`, returns two dictionaries. The first dictionary is the metrics mentioned above, and the second one is a dictionary containing `'confusion_matrix'` (which is the confusion matrix).

+ 25 - 25
docs/data/dataset_summary_en.md

@@ -9,18 +9,18 @@
 | [1-5](https://aistudio.baidu.com/aistudio/datasetdetail/51873) | [NWPU RESISC45](https://gcheng-nwpu.github.io/#Datasets)     | Image Classification   | 256 * 256                              | 3         | 31500    | 45     | jpg      | folder name     | 0.2~ 30m           | __           | Satellite image           | GoogleEarth                                          | 2016     | Northwestern Polytechnical University                                              | https://gcheng-nwpu.github.io/#Datasets                      | https://aistudio.baidu.com/aistudio/datasetdetail/51873  |
 | [1-6](https://aistudio.baidu.com/aistudio/datasetdetail/52025) | [AID](https://captain-whu.github.io/AID/)                    | Image Classification   | 600 * 600                              | 3         | 10000    | 30     | jpg      | folder name     | 0.5~ 8m            | __           | Satellite image           | GoogleEarth                                          | 2017     | Wuhan University                                                  | https://captain-whu.github.io/AID/                           | https://aistudio.baidu.com/aistudio/datasetdetail/52025  |
 | [1-7](https://aistudio.baidu.com/aistudio/datasetdetail/52359) | [RSD46 WHU](https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU)  | Image Classification   | 256 * 256                              | 3         | 117000   | 46     | png      | folder name     | 0.5~ 2m            | __           | Satellite image           | GoogleEarth, Tianditu                                | 2017     | Wuhan University                                                  | https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU               | https://aistudio.baidu.com/aistudio/datasetdetail/52359  |
-| [1-8](https://aistudio.baidu.com/aistudio/datasetdetail/55324) | [GID](https://x-ytong.github.io/project/GID.html)            | Image Classification   | 56 * 56                                | 34      | 30000    | 15     | tif      | folder name     | __                 | __           | Satellite image           | GF2                                                  | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/55324  |
+| [1-8](https://aistudio.baidu.com/aistudio/datasetdetail/55324) | [GID](https://x-ytong.github.io/project/GID.html)            | Image Classification   | 56 * 56                                | 3, 4      | 30000    | 15     | tif      | folder name     | __                 | __           | Satellite image           | GF2                                                  | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/55324  |
 | [1-9](https://aistudio.baidu.com/aistudio/datasetdetail/52411) | [PatternNet](https://sites.google.com/view/zhouwx/dataset#h.p_Tgef10WTuEFr) | Image Classification   | 256 * 256                              | 3         | 30400    | 38     | jpg      | folder name     | 0.062~ 4.693m      | __           | Satellite image           | GoogleMap                                            | 2018     | Wuhan University                                                  | https://sites.google.com/view/zhouwx/dataset#h.p_Tgef10WTuEFr | https://aistudio.baidu.com/aistudio/datasetdetail/52411  |
 | [1-10](https://aistudio.baidu.com/aistudio/datasetdetail/88155) | [Satellite   Images of Hurricane Damage](https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized) | Image Classification   | 128 * 128                              | 3         | 23000    | 2      | jpeg     | folder name     | __                 | __           | Satellite image           | GeoEye1 etc                                            | 2018     | University of Washington                                  | https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized | https://aistudio.baidu.com/aistudio/datasetdetail/88155  |
 | [1-11](https://aistudio.baidu.com/aistudio/datasetdetail/88597) | [How to make   high resolution remote sensing image dataset](https://blog.csdn.net/u012193416/article/details/79472533) | Image Classification   | 256 * 256                              | 3         | 533      | 5      | jpg      | folder name     | 2.38866m           | __           | Satellite image           | GoogleEarth                                          | 2018     | __                                                        | https://blog.csdn.net/u012193416/article/details/79472533    | https://aistudio.baidu.com/aistudio/datasetdetail/88597  |
-| [1-12](https://aistudio.baidu.com/aistudio/datasetdetail/52650) | [EuroSAT](https://github.com/phelber/eurosat)                | Image Classification   | 64 * 64                                | 313     | 27000    | 10     | jpg, tif | folder name     | 10m                | __           | Satellite image           | Sentinel2                                            | 2018     | University of Kaiserslautern, Germany                                        | https://github.com/phelber/eurosat                           | https://aistudio.baidu.com/aistudio/datasetdetail/52650  |
+| [1-12](https://aistudio.baidu.com/aistudio/datasetdetail/52650) | [EuroSAT](https://github.com/phelber/eurosat)                | Image Classification   | 64 * 64                                | 3, 13     | 27000    | 10     | jpg, tif | folder name     | 10m                | __           | Satellite image           | Sentinel2                                            | 2018     | University of Kaiserslautern, Germany                                        | https://github.com/phelber/eurosat                           | https://aistudio.baidu.com/aistudio/datasetdetail/52650  |
 | [1-13](https://aistudio.baidu.com/aistudio/datasetdetail/135146) | [HistAerial   Dataset](http://eidolon.univ-lyon2.fr/~remi1/HistAerialDataset/) | Image Classification   | 25 * 25, 50 * 50 , 100 * 100           | 1         | 42000    | 7      | png      | folder name     | __                 | __           | Aerial image           | Aerial image                                             | 2019     | Univ Lyon                                                 | http://eidolon.univ-lyon2.fr/~remi1/HistAerialDataset/       | https://aistudio.baidu.com/aistudio/datasetdetail/135146 |
 | [1-14](https://aistudio.baidu.com/aistudio/datasetdetail/51798) | [OPTIMAL 31](http://crabwq.github.io/)                       | Image Classification   | 256 * 256                              | 3         | 1860     | 31     | jpg      | folder name     | __                 | __           | Satellite image           | GoogleEarth                                          | 2019     | Northwestern Polytechnical University                                              | http://crabwq.github.io/                                     | https://aistudio.baidu.com/aistudio/datasetdetail/51798  |
 | [1-15](https://aistudio.baidu.com/aistudio/datasetdetail/76927) | [WiDSDatathon2019](https://www.kaggle.com/c/widsdatathon2019/data) | Image Classification   | 256 * 256                              | 3         | 11000    | 2      | jpg      | csv             | 3m                 | __           | Satellite image           | Planet                                               | 2019     | Stanford                                                  | https://www.kaggle.com/c/widsdatathon2019/data               | https://aistudio.baidu.com/aistudio/datasetdetail/76927  |
 | [1-16](https://aistudio.baidu.com/aistudio/datasetdetail/76417) | [CLRS](https://github.com/lehaifeng/CLRS)                    | Image Classification   | 256 * 256                              | 3         | 15000    | 25     | tif      | folder name     | 0.26~ 8.85m        | __           | Satellite image           | GoogleEarth, BingMap, GoogleMap, Tianditu            | 2020     | Central South University                                                  | https://github.com/lehaifeng/CLRS                            | https://aistudio.baidu.com/aistudio/datasetdetail/76417  |
 | [1-17](https://aistudio.baidu.com/aistudio/datasetdetail/52728) | [SenseEarth   Classify](https://rs.sensetime.com/competition/index.html#/info) | Image Classification   | 100 * 100~12655 * 12655                | 3         | 70000    | 51     | jpg      | txt             | 0.2~ 153m          | __           | Satellite image           | GoogleEarth                                          | 2020     | Sensetime                                                  | https://rs.sensetime.com/competition/index.html#/info        | https://aistudio.baidu.com/aistudio/datasetdetail/52728  |
-| [1-18](https://aistudio.baidu.com/aistudio/datasetdetail/86229) | [TG1HRSSC](http://www.msadc.cn/main/setsubDetail?id=1369487569196158978) | Image Classification   | 512 * 512                              | 1、54、52 | 204      | 9      | tif      | folder name     | 5m, 10m, 20m,      | 0.4~ 2.5μm   | Satellite image           | Tiangong-1                                             | 2021     | Engineering and Technology Center for Space Applications, Chinese Academy of Sciences                          | http://www.msadc.cn/main/setsubDetail?id=1369487569196158978 | https://aistudio.baidu.com/aistudio/datasetdetail/86229  |
-| [1-19](https://aistudio.baidu.com/aistudio/datasetdetail/86451) | [NaSC TG2](http://www.msadc.cn/main/setsubDetail?id=1370312964720037889) | Image Classification   | 128 * 128                              | 314     | 20000    | 10     | jpg, tif | folder name     | __                 | 0.40~ 1.04µm | Satellite image           | Tiangong-2                                             | 2021     | Engineering and Technology Center for Space Applications, Chinese Academy of Sciences                          | http://www.msadc.cn/main/setsubDetail?id=1370312964720037889 | https://aistudio.baidu.com/aistudio/datasetdetail/86451  |
+| [1-18](https://aistudio.baidu.com/aistudio/datasetdetail/86229) | [TG1HRSSC](http://www.msadc.cn/main/setsubDetail?id=1369487569196158978) | Image Classification   | 512 * 512                              | 1, 54, 52 | 204      | 9      | tif      | folder name     | 5m, 10m, 20m,      | 0.4~ 2.5μm   | Satellite image           | Tiangong-1                                             | 2021     | Engineering and Technology Center for Space Applications, Chinese Academy of Sciences                          | http://www.msadc.cn/main/setsubDetail?id=1369487569196158978 | https://aistudio.baidu.com/aistudio/datasetdetail/86229  |
+| [1-19](https://aistudio.baidu.com/aistudio/datasetdetail/86451) | [NaSC TG2](http://www.msadc.cn/main/setsubDetail?id=1370312964720037889) | Image Classification   | 128 * 128                              | 3, 14     | 20000    | 10     | jpg, tif | folder name     | __                 | 0.40~ 1.04µm | Satellite image           | Tiangong-2                                             | 2021     | Engineering and Technology Center for Space Applications, Chinese Academy of Sciences                          | http://www.msadc.cn/main/setsubDetail?id=1370312964720037889 | https://aistudio.baidu.com/aistudio/datasetdetail/86451  |
 | [1-20](https://aistudio.baidu.com/aistudio/datasetdetail/139361) | [S2UC Dataset](https://www.scidb.cn/en/detail?dataSetId=14e27d8c51ec40079b84591e9bb24df6) | Image Classification   | 224 * 224                              | 3         | 1714     | 2      | npy      | npy             | __                 | __           | Satellite image           | GoogleEarth                                          | 2021     | __                                                        | https://www.scidb.cn/en/detail?dataSetId=14e27d8c51ec40079b84591e9bb24df6 | https://aistudio.baidu.com/aistudio/datasetdetail/139361 |
 | [1-21](https://aistudio.baidu.com/aistudio/datasetdetail/52534) | [SAT 4](http://csc.lsu.edu/~saikat/deepsat/)                 | Image Classification   | 28 * 28                                | 4         | 500000   | 4      | mat      | mat             | 1~ 6m              | __           | Satellite image           | NAIPdataset                                          | 2015     | Louisiana State University                                        | http://csc.lsu.edu/~saikat/deepsat/                          | https://aistudio.baidu.com/aistudio/datasetdetail/52534  |
 | [1-22](https://aistudio.baidu.com/aistudio/datasetdetail/52534) | [SAT 6](http://csc.lsu.edu/~saikat/deepsat/)                 | Image Classification   | 28 * 28                                | 4         | 405000   | 6      | mat      | mat             | 1~ 6m              | __           | Satellite image           | NAIPdataset                                          | 2015     | Louisiana State University                                        | http://csc.lsu.edu/~saikat/deepsat/                          | https://aistudio.baidu.com/aistudio/datasetdetail/52534  |
@@ -28,17 +28,17 @@
 | [1-24](https://aistudio.baidu.com/aistudio/datasetdetail/51921) | [SIRI WHU USGS](http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html) | Image Classification   | 10000 * 9000                           | 3         | 1        | 4      | tif      | folder name     | 2foot              | __           | Satellite image           | USGS                                                 | 2016     | Wuhan University                                                  | http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html | https://aistudio.baidu.com/aistudio/datasetdetail/51921  |
 | [1-25](https://aistudio.baidu.com/aistudio/datasetdetail/52487) | [RSI CB128](https://github.com/lehaifeng/RSI-CB)             | Image Classification   | 256 * 256                              | 3         | 36000    | 45     | tif      | folder name     | 0.3~ 3m            | __           | Satellite image           | GoogleEarth, BingMap                                 | 2017     | Central South University                                                  | https://github.com/lehaifeng/RSI-CB                          | https://aistudio.baidu.com/aistudio/datasetdetail/52487  |
 | [1-26](https://aistudio.baidu.com/aistudio/datasetdetail/52487) | [RSI CB256](https://github.com/lehaifeng/RSI-CB)             | Image Classification   | 256 * 256                              | 3         | 24000    | 35     | tif      | folder name     | 0.3~ 3m            | __           | Satellite image           | GoogleEarth, BingMap                                 | 2017     | Central South University                                                  | https://github.com/lehaifeng/RSI-CB                          | https://aistudio.baidu.com/aistudio/datasetdetail/52487  |
-| [1-27](https://aistudio.baidu.com/aistudio/datasetdetail/58013) | [Multi View   Datasets CV BrCT](http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/) | Image Classification   | 500 * 475                              | 3         | 48342    | 8      | png, tif | folder name     | __                 | __           | Aerial imageSatellite image | Aerial image, Satellite image                                   | 2020     | Federal University of Minas Gerais                        | http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/ | https://aistudio.baidu.com/aistudio/datasetdetail/58013  |
+| [1-27](https://aistudio.baidu.com/aistudio/datasetdetail/58013) | [Multi View   Datasets CV BrCT](http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/) | Image Classification   | 500 * 475                              | 3         | 48342    | 8      | png, tif | folder name     | __                 | __           | Aerial image, Satellite image | Aerial image, Satellite image                                   | 2020     | Federal University of Minas Gerais                        | http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/ | https://aistudio.baidu.com/aistudio/datasetdetail/58013  |
 | [1-28](https://aistudio.baidu.com/aistudio/datasetdetail/58760) | [Multi View   Datasets AiRound](http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/) | Image Classification   | 500 * 475                              | 3         | 13980    | 11     | tif      | folder name     | __                 | __           | Satellite image           | Sentinel2 etc                                          | 2020     | Federal University of Minas Gerais                        | http://www.patreo.dcc.ufmg.br/2020/07/22/multi-view-datasets/ | https://aistudio.baidu.com/aistudio/datasetdetail/58760  |
 | 1-29                                                         | [braziliancoffeescenes](http://patreo.dcc.ufmg.br/2017/11/12/brazilian-coffee-scenes-dataset) | Image Classification   | 64 * 64                                | 3         | 2876     | __     | __       | __              | __                 | __           | Satellite image           | SPOTsensor                                           | 2015     | Federal University of Minas                                            | http://patreo.dcc.ufmg.br/2017/11/12/brazilian-coffee-scenes-dataset |                                                          |
-| 1-30                                                         | [Planet:   Understanding the Amazon from Space](https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data) | Image Classification   | 256 * 256                              | 34      | 40480    | __     | __       | __              | 3m                 | __           | Satellite image           | plantsensor                                          | 2017     | Planet                                                    | https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data |                                                          |
+| 1-30                                                         | [Planet:   Understanding the Amazon from Space](https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data) | Image Classification   | 256 * 256                              | 3, 4      | 40480    | __     | __       | __              | 3m                 | __           | Satellite image           | plantsensor                                          | 2017     | Planet                                                    | https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data |                                                          |
 | 1-31                                                         | [rscupcls](http://rscup.bjxintong.com.cn/#/theme/1)          | Image Classification   | 512 * 512                              | 3         | 197121   | 45     | jpg      | folder name     | __                 | __           | __                 | __                                                   | 2019     | __                                                        | http://rscup.bjxintong.com.cn/#/theme/1                      |                                                          |
 | [1-32](https://aistudio.baidu.com/aistudio/datasetdetail/78849) | [MSTAR](https://www.kaggle.com/atreyamajumdar/mstar-dataset-8-classes) | Image Classification   | 368 * 368                              | 1         | 9466     | 8      | jpg      | folder name     | 0.3m               | __           | SAR                | STARLOSSAR                                           | 1996     | Defense Advanced Research Projects Agency                 | https://www.kaggle.com/atreyamajumdar/mstar-dataset-8-classes | https://aistudio.baidu.com/aistudio/datasetdetail/78849  |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
 | [2-1](https://aistudio.baidu.com/aistudio/datasetdetail/53806) | [TAS](http://ai.stanford.edu/~gaheitz/Research/TAS/)         | Object Detection   | 792 * 636                              | 3         | 30       | 1      | .m       | HBB             | __                 | __           | Satellite image           | GoogleEarth                                          | 2008     | Stanford University                                                | http://ai.stanford.edu/~gaheitz/Research/TAS/                | https://aistudio.baidu.com/aistudio/datasetdetail/53806  |
 | [2-2](https://aistudio.baidu.com/aistudio/datasetdetail/53461) | [OIRDS](https://sourceforge.net/projects/oirds/)             | Object Detection   | 256 * 256~640 * 640                    | 3         | 900      | 5      | tif      | OBB             | 0.15m              | __           | Satellite image           | USGS, DARPA, VIVID                                   | 2009     | Raytheon Company                                                  | https://sourceforge.net/projects/oirds/                      | https://aistudio.baidu.com/aistudio/datasetdetail/53461  |
-| [2-3](https://aistudio.baidu.com/aistudio/datasetdetail/77674) | [SZTAKI INRIA   Building Detection Benchmark](http://web.eee.sztaki.hu/remotesensing/building_benchmark.html) | Object Detection   | 700± * 700±                            | 3         | 9        | 1      | jpg      | OBB             | __                 | __           | Aerial imageSatellite image | Aerial image, Satellite image                                   | 2012     | MTASZTAKI                                                 | http://web.eee.sztaki.hu/remotesensing/building_benchmark.html | https://aistudio.baidu.com/aistudio/datasetdetail/77674  |
+| [2-3](https://aistudio.baidu.com/aistudio/datasetdetail/77674) | [SZTAKI INRIA   Building Detection Benchmark](http://web.eee.sztaki.hu/remotesensing/building_benchmark.html) | Object Detection   | 700± * 700±                            | 3         | 9        | 1      | jpg      | OBB             | __                 | __           | Aerial image, Satellite image | Aerial image, Satellite image                                   | 2012     | MTASZTAKI                                                 | http://web.eee.sztaki.hu/remotesensing/building_benchmark.html | https://aistudio.baidu.com/aistudio/datasetdetail/77674  |
 | [2-4](https://aistudio.baidu.com/aistudio/datasetdetail/53318) | [UCAS_AOD](https://onedrive.hyper.ai/home/UCAS-AOD)          | Object Detection   | 1000± * 1000±                          | 3         | 976      | 2      | png      | OBB             | __                 | __           | Aerial image           | GoogleEarth                                          | 2014     | Chinese Academy of Sciences                                                    | https://onedrive.hyper.ai/home/UCAS-AOD                      | https://aistudio.baidu.com/aistudio/datasetdetail/53318  |
 | [2-5](https://aistudio.baidu.com/aistudio/datasetdetail/52812) | [NWPUVHR 10](https://gcheng-nwpu.github.io/#Datasets)        | Object Detection   | 500 * 500~1100 * 1100                  | 3         | 1510     | 10     | jpg      | HBB             | 0.08~ 2m           | __           | Satellite image           | GoogleEarth, Vaihingen                               | 2014     | Northwestern Polytechnical University                                              | https://gcheng-nwpu.github.io/#Datasets                      | https://aistudio.baidu.com/aistudio/datasetdetail/52812  |
 | [2-6](https://aistudio.baidu.com/aistudio/datasetdetail/53383) | [VEDAI](https://downloads.greyc.fr/vedai/)                   | Object Detection   | 512 * 512~1024 * 1024                  | 4         | 1210     | 9      | png      | OBB             | 0.125m             | __           | Satellite image           | UtahAGRC                                             | 2015     | University of Caen                                                 | https://downloads.greyc.fr/vedai/                            | https://aistudio.baidu.com/aistudio/datasetdetail/53383  |
@@ -64,9 +64,9 @@
 | [2-26](https://aistudio.baidu.com/aistudio/datasetdetail/137691) | [DroneCrowd](https://github.com/VisDrone/VisDrone-Dataset)   | Object Detection   | 640*512                                | 3         | 1807     | 1      | jpg      | __              | __                 | __           | Aerial image           | Aerial image                                             | 2020     | Tianjin University                                                  | https://github.com/VisDrone/VisDrone-Dataset                 | https://aistudio.baidu.com/aistudio/datasetdetail/137691 |
 | [2-27](https://aistudio.baidu.com/aistudio/datasetdetail/53125) | [DOTA1.0](https://captain-whu.github.io/DOTA/index.html)     | Object Detection   | 800 * 800~4000 * 4000                  | 3         | 2806     | 15     | png      | OBB             | __                 | __           | Satellite image           | GoogleEarth, GF2, JL0                                | 2018     | Wuhan University                                                  | https://captain-whu.github.io/DOTA/index.html                | https://aistudio.baidu.com/aistudio/datasetdetail/53125  |
 | [2-28](https://aistudio.baidu.com/aistudio/datasetdetail/53125) | [DOTA1.5](https://captain-whu.github.io/DOTA/index.html)     | Object Detection   | 800 * 800~4000 * 4000                  | 3         | 2806     | 16     | png      | OBB             | __                 | __           | Satellite image           | GoogleEarth, GF2, JL1                                | 2019     | Wuhan University                                                  | https://captain-whu.github.io/DOTA/index.html                | https://aistudio.baidu.com/aistudio/datasetdetail/53125  |
-| [2-29](https://aistudio.baidu.com/aistudio/datasetdetail/53125) | [DOTA2.0](https://captain-whu.github.io/DOTA/index.html)     | Object Detection   | 800 * 800~20000 * 20000                | 3         | 11268    | 18     | png      | OBB             | __                 | __           | Satellite imageAerial image | GoogleEarth, GF2, Aerial image                           | 2021     | Wuhan University                                                  | https://captain-whu.github.io/DOTA/index.html                | https://aistudio.baidu.com/aistudio/datasetdetail/53125  |
+| [2-29](https://aistudio.baidu.com/aistudio/datasetdetail/53125) | [DOTA2.0](https://captain-whu.github.io/DOTA/index.html)     | Object Detection   | 800 * 800~20000 * 20000                | 3         | 11268    | 18     | png      | OBB             | __                 | __           | Satellite image, Aerial image | GoogleEarth, GF2, Aerial image                           | 2021     | Wuhan University                                                  | https://captain-whu.github.io/DOTA/index.html                | https://aistudio.baidu.com/aistudio/datasetdetail/53125  |
 | 2-30                                                         | [COWC](https://gdo152.llnl.gov/cowc/)                        | Object Detection   | 2000 * 2000~19000 * 19000              | __        | 53       | __     | __       | onedot          | 0.15m              | __           | Satellite image           | Utah                                                 | 2016     | Lawrence Livermore National Laboratory                                  | https://gdo152.llnl.gov/cowc/                                |                                                          |
-| 2-31                                                         | [Functional Map of theWorld Challenge](https://github.com/fMoW/dataset) | Object Detection   | __                                     | 48      | 31       | __     | __       | onedot          | __                 | __           | Satellite image           | Utah                                                 | 2016     | Johns Hopkins University Applied Physics Laboratory                            | https://github.com/fMoW/dataset                              |                                                          |
+| 2-31                                                         | [Functional Map of theWorld Challenge](https://github.com/fMoW/dataset) | Object Detection   | __                                     | 4, 8      | 31       | __     | __       | onedot          | __                 | __           | Satellite image           | Utah                                                 | 2016     | Johns Hopkins University Applied Physics Laboratory                            | https://github.com/fMoW/dataset                              |                                                          |
 | 2-32                                                         | [CARPK](https://lafi.github.io/LPN/)                         | Object Detection   | __                                     | __        | 1573     | __     | png      | __              | __                 | __           | Aerial image           | Aerial image                                             | 2017     | Taiwan State University                                             | https://lafi.github.io/LPN/                                  |                                                          |
 | 2-33                                                         | [MAFAT   Challenge](https://competitions.codalab.org/competitions/19854) | Object Detection   | __                                     | __        | 4216     | __     | __       | HBB             | 0.05~ 0.15m        | __           | Aerial image           | Aerial image                                             | 2018     | yuvalsh                                                   | https://competitions.codalab.org/competitions/19854          |                                                          |
 | 2-34                                                         | [rscupdet](http://rscup.bjxintong.com.cn/#/theme/2)          | Object Detection   | 1024 * 1024                            | 3         | 2423     | __     | png      | OBB             | __                 | __           | Satellite image           | __                                                   | 2019     | __                                                        | http://rscup.bjxintong.com.cn/#/theme/2                      |                                                          |
@@ -83,23 +83,23 @@
 | [3-3](https://aistudio.baidu.com/aistudio/datasetdetail/57293) | [ERM PAIW](https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-52776) | Image Segmentation   | 4000± * 4000±                          | 3         | 41       | 1      | png, jpg | tif             | __                 | __           | Aerial image           | Aerial image                                             | 2015     | German AerospaceCenter (DLR)                              | https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-52776 | https://aistudio.baidu.com/aistudio/datasetdetail/57293  |
 | [3-4](https://aistudio.baidu.com/aistudio/datasetdetail/57162) | [HD Maps](https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-52773) | Image Segmentation   | 4000± * 4000±                          | 3         | 20       | 5      | png      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2016     | German AerospaceCenter (DLR)                              | https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-52773 | https://aistudio.baidu.com/aistudio/datasetdetail/57162  |
 | [3-5](https://aistudio.baidu.com/aistudio/datasetdetail/55424) | [BDCI2017](https://www.datafountain.cn/competitions/270)     | Image Segmentation   | 8000± * 8000±                          | 3         | 5        | 5      | png      | png             | __                 | __           | Satellite image           | __                                                   | 2017     | BDCI                                                      | https://www.datafountain.cn/competitions/270                 | https://aistudio.baidu.com/aistudio/datasetdetail/55424  |
-| [3-6](https://aistudio.baidu.com/aistudio/datasetdetail/56140) | [Learning Aerial Image Segmentation   From Online Maps](https://zenodo.org/record/1154821) | Image Segmentation   | 3000± * 3000±                          | 3         | 1671     | 2      | png      | png             | __                 | __           | Satellite imageAerial image | GoogleMaps, OpenStreetMap                            | 2017     | THZürich                                                  | https://zenodo.org/record/1154821                            | https://aistudio.baidu.com/aistudio/datasetdetail/56140  |
+| [3-6](https://aistudio.baidu.com/aistudio/datasetdetail/56140) | [Learning Aerial Image Segmentation   From Online Maps](https://zenodo.org/record/1154821) | Image Segmentation   | 3000± * 3000±                          | 3         | 1671     | 2      | png      | png             | __                 | __           | Satellite image, Aerial image | GoogleMaps, OpenStreetMap                            | 2017     | THZürich                                                  | https://zenodo.org/record/1154821                            | https://aistudio.baidu.com/aistudio/datasetdetail/56140  |
 | 3-7                                                          | [Inria Aerial Image Labeling Dataset](https://project.inria.fr/aerialimagelabeling/) | Image Segmentation   | 5000 * 5000                            | 3         | 180      | 1      | tif      | tif             | 0.3m               | __           | Aerial image           | Aerial image                                             | 2017     | Inria Sophia Antipolis-Mediterranee                       | https://project.inria.fr/aerialimagelabeling/                |                                                          |
 | [3-8](https://aistudio.baidu.com/aistudio/datasetdetail/55589) | [WHDLD](https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0) | Image Segmentation   | 256 * 256                              | 3         | 4940     | 6      | png      | png             | __                 | __           | Satellite image           | UCMerced                                             | 2018     | Wuhan University                                                  | https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0 | https://aistudio.baidu.com/aistudio/datasetdetail/55589  |
 | [3-9](https://aistudio.baidu.com/aistudio/datasetdetail/55005) | [DLRSD](https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0) | Image Segmentation   | 256 * 256                              | 3         | 2100     | 17     | tif      | png             | 1foot              | __           | Satellite image           | USGS National Map                                    | 2018     | Wuhan University                                                  | https://sites.google.com/view/zhouwx/dataset#h.p_hQS2jYeaFpV0 | https://aistudio.baidu.com/aistudio/datasetdetail/55005  |
 | [3-10](https://aistudio.baidu.com/aistudio/datasetdetail/136777) | [Multi-Sensor   Land-Cover Classification](https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-51180) | Image Segmentation   | 5957 * 8149, 6031 * 5596               | 4, 1      | 2        | 4      | tif      | tif             | __                 | __           | Satellite image           | Sentinel1B, Sentinel2A                               | 2018     | Wuhan University                                                  | https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760/22294_read-51180 | https://aistudio.baidu.com/aistudio/datasetdetail/136777 |
 | [3-11](https://aistudio.baidu.com/aistudio/datasetdetail/55222) | [Aeroscapes](https://github.com/ishann/aeroscapes)           | Image Segmentation   | 720 * 720                              | 3         | 3269     | 11     | jpg      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2018     | Carnegie Mellon University                                | https://github.com/ishann/aeroscapes                         | https://aistudio.baidu.com/aistudio/datasetdetail/55222  |
 | [3-12](https://aistudio.baidu.com/aistudio/datasetdetail/74274) | [AIRS](https://www.airs-dataset.com/)                        | Image Segmentation   | 10000 * 10000                          | 3         | 190      | 1      | tif      | tif             | 0.075m             | __           | Aerial image           | LINZ Data Service                                    | 2018     | University of Tokyo                                       | https://www.airs-dataset.com/                                | https://aistudio.baidu.com/aistudio/datasetdetail/74274  |
-| [3-13](https://aistudio.baidu.com/aistudio/datasetdetail/98991) | [RIT 18](https://github.com/rmkemker/RIT-18)                 | Image Segmentation   | 9393 * 5642、8833 * 6918、12446 * 7654 | 7         | 3        | 18     | mat      | npy             | 0.047m             | __           | Satellite image           | Tetracam MicroMCA6                                   | 2018     | Rochester Institute of Technology                         | https://github.com/rmkemker/RIT-18                           | https://aistudio.baidu.com/aistudio/datasetdetail/98991  |
+| [3-13](https://aistudio.baidu.com/aistudio/datasetdetail/98991) | [RIT 18](https://github.com/rmkemker/RIT-18)                 | Image Segmentation   | 9393 * 5642, 8833 * 6918, 12446 * 7654 | 7         | 3        | 18     | mat      | npy             | 0.047m             | __           | Satellite image           | Tetracam MicroMCA6                                   | 2018     | Rochester Institute of Technology                         | https://github.com/rmkemker/RIT-18                           | https://aistudio.baidu.com/aistudio/datasetdetail/98991  |
 | [3-14](https://aistudio.baidu.com/aistudio/datasetdetail/79283) | [Drone Deploy](https://github.com/dronedeploy/dd-ml-segmentation-benchmark) | Image Segmentation   | 6000± * 6000±                          | 3         | 55       | 7      | tif      | png             | 0.1m               | __           | Aerial image           | drones                                               | 2019     | Drone Deploy                                              | https://github.com/dronedeploy/dd-ml-segmentation-benchmark  | https://aistudio.baidu.com/aistudio/datasetdetail/79283  |
 | [3-15](https://aistudio.baidu.com/aistudio/datasetdetail/74848) | [Road Tracer](https://github.com/mitroadmaps/roadtracer/)    | Image Segmentation   | 4096 * 4096                            | 3         | 3000     | 1      | png      | png             | 0.6m               | __           | Satellite image           | Googleearth, OSM                                     | 2019     | MIT                                                       | https://github.com/mitroadmaps/roadtracer/                   | https://aistudio.baidu.com/aistudio/datasetdetail/74848  |
 | [3-16](https://aistudio.baidu.com/aistudio/datasetdetail/121515) | [Bijie Landslide Dataset](http://gpcv.whu.edu.cn/data/Bijie_pages.html) | Image Segmentation   | 200± * 200±                            | 3         | 771      | 1      | png      | png             | 0.68m              | __           | Satellite image           | TripleSat                                            | 2019     | Wuhan University                                                  | http://gpcv.whu.edu.cn/data/Bijie_pages.html                 | https://aistudio.baidu.com/aistudio/datasetdetail/121515 |
 | [3-17](https://aistudio.baidu.com/aistudio/datasetdetail/135648) | [GF2 Dataset for 3DFGC](http://gpcv.whu.edu.cn/data/3DFGC_pages.html) | Image Segmentation   | 1417 * 2652 , 1163 * 2120              | 4         | 11       | 5      | tif      | tif             | 4m                 | __           | Satellite image           | GF2                                                  | 2019     | Wuhan University                                                  | http://gpcv.whu.edu.cn/data/3DFGC_pages.html                 | https://aistudio.baidu.com/aistudio/datasetdetail/135648 |
 | [3-18](https://aistudio.baidu.com/aistudio/datasetdetail/134732) | [Semantic Drone Dataset](http://dronedataset.icg.tugraz.at)  | Image Segmentation   | 6000 * 4000                            | 3         | 400      | 22     | png      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2019     | Graz University of Technology                             | http://dronedataset.icg.tugraz.at                            | https://aistudio.baidu.com/aistudio/datasetdetail/134732 |
 | [3-19](https://aistudio.baidu.com/aistudio/datasetdetail/136174) | [WHU Cloud   Dataset](http://gpcv.whu.edu.cn/data/WHU_Cloud_Dataset.html) | Image Segmentation   | 512 * 512                              | 3         | 730      | 1      | tif      | tif             | __                 | __           | Satellite image           | Landsat 8                                            | 2020     | Wuhan University                                                  | http://gpcv.whu.edu.cn/data/WHU_Cloud_Dataset.html           | https://aistudio.baidu.com/aistudio/datasetdetail/136174 |
-| [3-20](https://aistudio.baidu.com/aistudio/datasetdetail/76629) | [Land Cover from Aerial Imagery (landcover_ai)](https://landcover.ai/) | Image Segmentation   | 9000 * 95004200 * 4700               | 3         | 41       | 3      | tif      | tif             | 0.25~ 0.5m         | __           | Aerial image           | Aerial image                                             | 2020     | linuxpols                                                 | https://landcover.ai/                                        | https://aistudio.baidu.com/aistudio/datasetdetail/76629  |
-| [3-21](https://aistudio.baidu.com/aistudio/datasetdetail/55774) | [UAVid](https://www.uavid.nl/)                               | Image Segmentation   | 4096 * 21603840 * 2160               | 3         | 300      | 8      | png      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2020     | University of Twente                                      | https://www.uavid.nl/                                        | https://aistudio.baidu.com/aistudio/datasetdetail/55774  |
-| [3-22](https://aistudio.baidu.com/aistudio/datasetdetail/51568) | [AI + Remote sensing image](https://www.datafountain.cn/competitions/457) | Image Segmentation   | 256 * 256                              | 3         | 100000   | 817  | tif      | tif, png        | 0.1~ 4m            | __           | Satellite image           | GF1, GF2, GF6, GJ2, BJ2, Aerial image                    | 2020     | Organizing Committee of National Artificial Intelligence Competition                                   | https://www.datafountain.cn/competitions/457                 | https://aistudio.baidu.com/aistudio/datasetdetail/51568  |
+| [3-20](https://aistudio.baidu.com/aistudio/datasetdetail/76629) | [Land Cover from Aerial Imagery (landcover_ai)](https://landcover.ai/) | Image Segmentation   | 9000 * 9500, 4200 * 4700               | 3         | 41       | 3      | tif      | tif             | 0.25~ 0.5m         | __           | Aerial image           | Aerial image                                             | 2020     | linuxpols                                                 | https://landcover.ai/                                        | https://aistudio.baidu.com/aistudio/datasetdetail/76629  |
+| [3-21](https://aistudio.baidu.com/aistudio/datasetdetail/55774) | [UAVid](https://www.uavid.nl/)                               | Image Segmentation   | 4096 * 2160, 3840 * 2160               | 3         | 300      | 8      | png      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2020     | University of Twente                                      | https://www.uavid.nl/                                        | https://aistudio.baidu.com/aistudio/datasetdetail/55774  |
+| [3-22](https://aistudio.baidu.com/aistudio/datasetdetail/51568) | [AI + Remote sensing image](https://www.datafountain.cn/competitions/457) | Image Segmentation   | 256 * 256                              | 3         | 100000   | 8, 17  | tif      | tif, png        | 0.1~ 4m            | __           | Satellite image           | GF1, GF2, GF6, GJ2, BJ2, Aerial image                    | 2020     | Organizing Committee of National Artificial Intelligence Competition                                   | https://www.datafountain.cn/competitions/457                 | https://aistudio.baidu.com/aistudio/datasetdetail/51568  |
 | [3-23](https://aistudio.baidu.com/aistudio/datasetdetail/56051) | [BDCI2020](https://www.datafountain.cn/competitions/475)     | Image Segmentation   | 256 * 256                              | 3         | 145981   | 7      | jpg      | png             | __                 | __           | Satellite image           | __                                                   | 2020     | BDCI                                                      | https://www.datafountain.cn/competitions/475                 | https://aistudio.baidu.com/aistudio/datasetdetail/56051  |
 | [3-24](https://aistudio.baidu.com/aistudio/datasetdetail/70361) | [mini Inria   Aerial Image Labeling Dataset](https://tianchi.aliyun.com/competition/entrance/531872/introduction) | Image Segmentation   | 512 * 512                              | 3         | 32500    | 1      | jpg      | csv             | 0.3m               | __           | Aerial image           | Aerial image                                             | 2021     | Tianchi Competition                                                  | https://tianchi.aliyun.com/competition/entrance/531872/introduction | https://aistudio.baidu.com/aistudio/datasetdetail/70361  |
 | [3-25](https://aistudio.baidu.com/aistudio/datasetdetail/121200) | [LoveDA](https://github.com/Junjue-Wang/LoveDA)              | Image Segmentation   | 1024 * 1024                            | 3         | 5987     | 7      | png      | png             | 0.3m               | __           | Satellite image           | GoogleEarth                                          | 2021     | Wuhan University                                                  | https://github.com/Junjue-Wang/LoveDA                        | https://aistudio.baidu.com/aistudio/datasetdetail/121200 |
@@ -108,7 +108,7 @@
 | [3-28](https://aistudio.baidu.com/aistudio/datasetdetail/56961) | [Massachusetts Roads](https://www.cs.toronto.edu/~vmnih/data/) | Image Segmentation   | 1500 * 1500                            | 3         | 804      | 1      | png      | png             | 1m                 | __           | Aerial image           | Aerial image                                             | 2013     | University of Toronto                                     | https://www.cs.toronto.edu/~vmnih/data/                      | https://aistudio.baidu.com/aistudio/datasetdetail/56961  |
 | [3-29](https://aistudio.baidu.com/aistudio/datasetdetail/57019) | [Massachusetts Builds](https://www.cs.toronto.edu/~vmnih/data/) | Image Segmentation   | 1500 * 1500                            | 3         | 151      | 1      | png      | png             | 1m                 | __           | Aerial image           | Aerial image                                             | 2013     | University of Toronto                                     | https://www.cs.toronto.edu/~vmnih/data/                      | https://aistudio.baidu.com/aistudio/datasetdetail/57019  |
 | [3-30](https://aistudio.baidu.com/aistudio/datasetdetail/55681) | [Deep Globe Land Cover Classification   Challenge](http://deepglobe.org/challenge.html) | Image Segmentation   | 2448 * 2448                            | 3         | 803      | 7      | jpg      | png             | 0.5m               | __           | Satellite image           | DigitalGlobe                                         | 2018     | CVPR                                                      | http://deepglobe.org/challenge.html                          | https://aistudio.baidu.com/aistudio/datasetdetail/55681  |
-| [3-31](https://aistudio.baidu.com/aistudio/datasetdetail/55682) | [Deep Globe Road Detection Challenge](http://deepglobe.org/challenge.html) | Image Segmentation   | 1024 * 1024                            | 314     | 6226     | 1      | jpg      | png             | 0.5m               | __           | Satellite image           | DigitalGlobe                                         | 2018     | CVPR                                                      | http://deepglobe.org/challenge.html                          | https://aistudio.baidu.com/aistudio/datasetdetail/55682  |
+| [3-31](https://aistudio.baidu.com/aistudio/datasetdetail/55682) | [Deep Globe Road Detection Challenge](http://deepglobe.org/challenge.html) | Image Segmentation   | 1024 * 1024                            | 3, 14     | 6226     | 1      | jpg      | png             | 0.5m               | __           | Satellite image           | DigitalGlobe                                         | 2018     | CVPR                                                      | http://deepglobe.org/challenge.html                          | https://aistudio.baidu.com/aistudio/datasetdetail/55682  |
 | [3-32](https://aistudio.baidu.com/aistudio/datasetdetail/56341) | [WHU Building   Dataset, Satellite datasetⅠ   (globalcities)](https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html) | Image Segmentation   | 512 * 512                              | 3         | 204      | 1      | tif      | tif             | 0.3~ 2.5m          | __           | Satellite image           | QuickBird, Worldviewseries, IKONOS, ZY3              | 2019     | Wuhan University                                                  | https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html | https://aistudio.baidu.com/aistudio/datasetdetail/56341  |
 | [3-33](https://aistudio.baidu.com/aistudio/datasetdetail/56356) | [WHU Building   Dataset, Satellite datasetⅡ (EastAsia)](https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html) | Image Segmentation   | 512 * 512                              | 3         | 17388    | 1      | tif      | tif             | 0.45m              | __           | Satellite image           | __                                                   | 2019     | Wuhan University                                                  | https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html | https://aistudio.baidu.com/aistudio/datasetdetail/56356  |
 | [3-34](https://aistudio.baidu.com/aistudio/datasetdetail/56502) | [WHU Building   Dataset, Aerial imagery dataset](https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html) | Image Segmentation   | 512 * 512                              | 3         | 8189     | 1      | tif      | tif             | 0.3m               | __           | Satellite image           | __                                                   | 2019     | Wuhan University                                                  | https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html | https://aistudio.baidu.com/aistudio/datasetdetail/56502  |
@@ -118,8 +118,8 @@
 | [3-38](https://aistudio.baidu.com/aistudio/datasetdetail/56839) | [95 Cloud: An Extension to 38 Cloud Dataset](https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset) | Image Segmentation   | 384 * 384                              | 4         | 34701    | 1      | tif      | tif             | 30m                | __           | Satellite image           | Landsat8                                             | 2020     | Simon Fraser University                                   | https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset | https://aistudio.baidu.com/aistudio/datasetdetail/56839  |
 | [3-39](https://aistudio.baidu.com/aistudio/datasetdetail/55153) | [Postdam](https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/) | Image Segmentation   | 6000 * 6000                            | 3         | 38       | 6      | tif      | tif             | 0.05m              | __           | Aerial image           | Aerial image                                             | 2012     | ISPRS                                                     | https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/ | https://aistudio.baidu.com/aistudio/datasetdetail/55153  |
 | [3-40](https://aistudio.baidu.com/aistudio/datasetdetail/55408) | [Vaihingen](https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/) | Image Segmentation   | 2000± * 2000±                          | 3         | 33       | 6      | tif      | tif             | 0.09m              | __           | Aerial image           | Aerial image                                             | 2012     | ISPRS                                                     | https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/ | https://aistudio.baidu.com/aistudio/datasetdetail/55408  |
-| [3-41](https://aistudio.baidu.com/aistudio/datasetdetail/54878) | [GID Fine Land cover Classification   15 classes](https://x-ytong.github.io/project/GID.html) | Image Segmentation   | 7200 * 6800                            | 34      | 10       | 5      | tif      | tif             | 0.8~ 10m           | __           | Satellite image           | GF2                                                | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/54878  |
-| [3-42](https://aistudio.baidu.com/aistudio/datasetdetail/54934) | [GID Large scale Classification 5   classes](https://x-ytong.github.io/project/GID.html) | Image Segmentation   | 7200 * 6800                            | 34      | 150      | 15     | tif      | tif             | 0.8~ 10m           | __           | Satellite image           | GF2, GF1, JL1, ZY3, Sentinel2A, GoogleEarth          | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/54934  |
+| [3-41](https://aistudio.baidu.com/aistudio/datasetdetail/54878) | [GID Fine Land cover Classification   15 classes](https://x-ytong.github.io/project/GID.html) | Image Segmentation   | 7200 * 6800                            | 3, 4      | 10       | 5      | tif      | tif             | 0.8~ 10m           | __           | Satellite image           | GF2                                                | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/54878  |
+| [3-42](https://aistudio.baidu.com/aistudio/datasetdetail/54934) | [GID Large scale Classification 5   classes](https://x-ytong.github.io/project/GID.html) | Image Segmentation   | 7200 * 6800                            | 3, 4      | 150      | 15     | tif      | tif             | 0.8~ 10m           | __           | Satellite image           | GF2, GF1, JL1, ZY3, Sentinel2A, GoogleEarth          | 2018     | Wuhan University                                                  | https://x-ytong.github.io/project/GID.html                   | https://aistudio.baidu.com/aistudio/datasetdetail/54934  |
 | [3-43](https://aistudio.baidu.com/aistudio/datasetdetail/75675) | [UDD5](https://github.com/MarcWong/UDD)                      | Image Segmentation   | 4096± * 2160±                          | 3         | 160      | 5      | png      | png             | __                 | __           | Aerial image           | DJIPhantom4                                          | 2018     | Peking University                                                  | https://github.com/MarcWong/UDD                              | https://aistudio.baidu.com/aistudio/datasetdetail/75675  |
 | [3-44](https://aistudio.baidu.com/aistudio/datasetdetail/75675) | [UDD6](https://github.com/MarcWong/UDD)                      | Image Segmentation   | 4096± * 2160±                          | 3         | 141      | 6      | png      | png             | __                 | __           | Aerial image           | DJIPhantom4                                          | 2018     | Peking University                                                  | https://github.com/MarcWong/UDD                              | https://aistudio.baidu.com/aistudio/datasetdetail/75675  |
 | [3-45](https://aistudio.baidu.com/aistudio/datasetdetail/57579) | [BH POOLS](http://www.patreo.dcc.ufmg.br/2020/07/29/bh-pools-watertanks-datasets/) | Image Segmentation   | 3840 * 2160                            | 3         | 200      | 1      | jpg      | png             | __                 | __           | Satellite image           | GoogleEarth                                          | 2020     | Federal University of Minas Gerais                        | http://www.patreo.dcc.ufmg.br/2020/07/29/bh-pools-watertanks-datasets/ | https://aistudio.baidu.com/aistudio/datasetdetail/57579  |
@@ -130,11 +130,11 @@
 | [3-50](https://aistudio.baidu.com/aistudio/datasetdetail/135044) | [Barley Remote Sensing Dataset](https://tianchi.aliyun.com/competition/entrance/231717/information) | Image Segmentation   | 47161 * 50141,   77470* 40650          | 3         | 2        | 4      | png      | png             | __                 | __           | Aerial image           | Aerial image                                             | 2019     | __                                                        | https://tianchi.aliyun.com/competition/entrance/231717/information | https://aistudio.baidu.com/aistudio/datasetdetail/135044 |
 | 3-51                                                         | [rscupseg](http://rscup.bjxintong.com.cn/#/theme/3)          | Image Segmentation   | 7200 * 6800                            | 4         | 20       | 6      | tif      | tif             | 4m                 | __           | Satellite image           | GF2                                                  | 2019     | __                                                        | http://rscup.bjxintong.com.cn/#/theme/3                      |                                                          |
 | 3-52                                                         | [2020 Digital China Innovation Competition](https://tianchi.aliyun.com/competition/entrance/231767/introduction) | Image Segmentation   | 4000± * 4000±                          | 3         | 8        | 1      | tif      | tif             | 0.8m               | __           | Satellite image           | GF2                                                  | 2020     | __                                                        | https://tianchi.aliyun.com/competition/entrance/231767/introduction |                                                          |
-| 3-53                                                         | ["Huawei Cloud Cup" 2020 AI Innovation Application Competition](https://competition.huaweicloud.com/information/1000041322/circumstance?track=107) | Image Segmentation   | 10391 * 3310634612 * 29810           | 3         | 2        | 1      | png      | png             | 0.8m               | __           | Satellite image           | BJ2                                                  | 2020     | __                                                        | https://competition.huaweicloud.com/information/1000041322/circumstance?track=107 |                                                          |
+| 3-53                                                         | ["Huawei Cloud Cup" 2020 AI Innovation Application Competition](https://competition.huaweicloud.com/information/1000041322/circumstance?track=107) | Image Segmentation   | 10391 * 33106, 34612 * 29810           | 3         | 2        | 1      | png      | png             | 0.8m               | __           | Satellite image           | BJ2                                                  | 2020     | __                                                        | https://competition.huaweicloud.com/information/1000041322/circumstance?track=107 |                                                          |
 | 3-54                                                         | [2021 National Digital Ecological Innovation Competition](https://tianchi.aliyun.com/competition/entrance/531860/rankingList) | Image Segmentation   | 256 * 256                              | 4         | 16017    | __     | tif      | tif             | 0.8~ 2m            | __           | Satellite image           | GF                                                   | 2021     | Zhejiang University                                                  | https://tianchi.aliyun.com/competition/entrance/531860/rankingList |                                                          |
 | 3-55                                                         | [LRSNY](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9333652) | Image Segmentation   | 1000 * 1000                            | 3         | 1368     | __     | __       | __              | 0.5m               | __           | Satellite image           | __                                                   | 2021     | IEEE                                                      | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9333652 |                                                          |
 | 3-56                                                         | [gf2021 Sea ice target monitoring data set in visible light image facing Ocean 1](http://sw.chreos.org/challenge/dataset/5) | Image Segmentation   | 512 * 512                              | 3         | 2500+    | 1      | png      | png             | 50m                | __           | Satellite image           | HY1                                                  | 2021     | Chinese Academy of Sciences                                                    | http://sw.chreos.org/challenge/dataset/5                     |                                                          |
-| 3-57                                                         | [rsipacseg](http://rsipac.whu.edu.cn/subject_one)            | Image Segmentation   | 512 * 512                              | 4         | 70000    | 947  | tif      | png             | 0.8~ 2m            | __           | __                 | __                                                   | 2021     | Wuhan University                                                  | http://rsipac.whu.edu.cn/subject_one                         |                                                          |
+| 3-57                                                         | [rsipacseg](http://rsipac.whu.edu.cn/subject_one)            | Image Segmentation   | 512 * 512                              | 4         | 70000    | 9, 47  | tif      | png             | 0.8~ 2m            | __           | __                 | __                                                   | 2021     | Wuhan University                                                  | http://rsipac.whu.edu.cn/subject_one                         |                                                          |
 | 3-58                                                         | [2021 National Artificial Intelligence Innovation Contest-Cultivated Land recognition with Remote sensing images](http://www.aiinnovation.com.cn/#/AIcaict/trackDetail) | Image Segmentation   | 256 * 256                              | 3         | 50000    | 1      | png      | png             | 1m                 | __           | __                 | __                                                   | 2021     | __                                                        | http://www.aiinnovation.com.cn/#/AIcaict/trackDetail         |                                                          |
 | [3-59](https://aistudio.baidu.com/aistudio/datasetdetail/82020) | [Salinas scene](http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes) | Image Segmentation   | 512 * 217                              | 224       | 1        | 16     | mat      | mat             | 3.7m               | 10nm         | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS                       | 2011     | __                                                        | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes | https://aistudio.baidu.com/aistudio/datasetdetail/82020  |
 | [3-60](https://aistudio.baidu.com/aistudio/datasetdetail/82020) | [Salinas   Ascene](http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes) | Image Segmentation   | 83 * 86                                | 224       | 1        | 6      | mat      | mat             | 3.7m               | 10nm         | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS                       | 2011     | __                                                        | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes | https://aistudio.baidu.com/aistudio/datasetdetail/82020  |
@@ -143,11 +143,11 @@
 | [3-63](https://aistudio.baidu.com/aistudio/datasetdetail/83251) | [Washington   DCMALL](http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes) | Image Segmentation   | 1280 * 307                             | 191       | 1        | 7      | tif      | tif             | __                 | 10nm         | hyperspectral             | Airborne hyperspectral daa/ Hydice                               | 2013     | Spectral Information Technology                           | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes | https://aistudio.baidu.com/aistudio/datasetdetail/83251  |
 | [3-64](https://aistudio.baidu.com/aistudio/datasetdetail/81800) | [Ikennedy   Space Center ](http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes) | Image Segmentation   | 512 * 614                              | 176       | 1        | 13     | mat      | mat             | 0.18m              | 10nm         | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS                       | 2014     | Center for Space Research-The University of TexasatAustin | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes | https://aistudio.baidu.com/aistudio/datasetdetail/81800  |
 | [3-65](https://aistudio.baidu.com/aistudio/datasetdetail/82578) | [Botswana](http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes) | Image Segmentation   | 1476 * 256                             | 145       | 1        | 14     | mat      | mat             | 30m                | __           | hyperspectral             | EO1                                                  | 2014     | __                                                        | http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes | https://aistudio.baidu.com/aistudio/datasetdetail/82578  |
-| [3-66](https://aistudio.baidu.com/aistudio/datasetdetail/80970) | [Indian Pines](https://purr.purdue.edu/publications/1947/1)  | Image Segmentation   | 145 * 145、614 * 1848、2678 * 614      | 224       | 3        | 16     | tif      | tif             | __                 | 10nm         | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS                       | 2015     | Purdue University                                         | https://purr.purdue.edu/publications/1947/1                  | https://aistudio.baidu.com/aistudio/datasetdetail/80970  |
+| [3-66](https://aistudio.baidu.com/aistudio/datasetdetail/80970) | [Indian Pines](https://purr.purdue.edu/publications/1947/1)  | Image Segmentation   | 145 * 145, 614 * 1848, 2678 * 614      | 224       | 3        | 16     | tif      | tif             | __                 | 10nm         | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS                       | 2015     | Purdue University                                         | https://purr.purdue.edu/publications/1947/1                  | https://aistudio.baidu.com/aistudio/datasetdetail/80970  |
 | [3-67](https://aistudio.baidu.com/aistudio/datasetdetail/80840) | [HyRANK](https://www2.isprs.org/commissions/comm3/wg4/hyrank/) | Image Segmentation   | 250± * 1000±                           | 176       | 5        | 14     | tif      | tif             | 30m                | __           | hyperspectral             | EO1                                                  | 2018     | National Technical University of Athen                    | https://www2.isprs.org/commissions/comm3/wg4/hyrank/         | https://aistudio.baidu.com/aistudio/datasetdetail/80840  |
 | [3-68](https://aistudio.baidu.com/aistudio/datasetdetail/100218) | [XiongAn   hyperspectral dataset](http://www.hrs-cas.com/a/share/shujuchanpin/2019/0501/1049.html) | Image Segmentation   | 3750 * 1580                            | 250       | 1        | 19     | img      | img             | 0.5m               | 2.4nm        | hyperspectral             | Airborne hyperspectral data/ GF full spectrum multimode imaging spectrometer for aircraft systems | 2019     | Chinese Academy of Sciences                                                    | http://www.hrs-cas.com/a/share/shujuchanpin/2019/0501/1049.html | https://aistudio.baidu.com/aistudio/datasetdetail/100218 |
 | [3-69](https://aistudio.baidu.com/aistudio/datasetdetail/126831) | [AIR PolSAR   Seg](https://radars.ac.cn/web/data/getData?newsColumnId=1e6ecbcc-266d-432c-9c8a-0b9a922b5e85) | Image Segmentation   | 512 * 512                              | 4         | 500      | 6      | tiff     | png             | 8m                 | __           | SAR                | __                                                   | 2021     | Journal of Radar Science                                       | https://radars.ac.cn/web/data/getData?newsColumnId=1e6ecbcc-266d-432c-9c8a-0b9a922b5e85 | https://aistudio.baidu.com/aistudio/datasetdetail/126831 |
-| 3-70                                                         | [gf2021 dataset for segmentation of nearshore aquaculture farms in high-resolution SAR images.](http://sw.chreos.org/challenge/dataset/3) | Image Segmentation   | 512 * 512, 1024 * 1024, 2048 *  2048   | 1         | 6000+    | 1      | png      | png             | 1~ 3m              | __           | SAR                | HS1GF3                                             | 2021     | Chinese Academy of Sciences                                                    | http://sw.chreos.org/challenge/dataset/3                     |                                                          |
+| 3-70                                                         | [gf2021 dataset for segmentation of nearshore aquaculture farms in high-resolution SAR images.](http://sw.chreos.org/challenge/dataset/3) | Image Segmentation   | 512 * 512, 1024 * 1024, 2048 *  2048   | 1         | 6000+    | 1      | png      | png             | 1~ 3m              | __           | SAR                | HS1, GF3                                             | 2021     | Chinese Academy of Sciences                                                    | http://sw.chreos.org/challenge/dataset/3                     |                                                          |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
 | [4-1](https://aistudio.baidu.com/aistudio/datasetdetail/77781) | [SZTAKI INRIA   Air Change](http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html) | Change Detection   | 952 * 640                              | 3         | 26       | 1      | bmp      | bmp             | 1.5m               | __           | Satellite image           | __                                                   | 2009     | MTASZTAKI                                                 | http://web.eee.sztaki.hu/remotesensing/airchange_benchmark.html | https://aistudio.baidu.com/aistudio/datasetdetail/77781  |
@@ -159,7 +159,7 @@
 | [4-7](https://aistudio.baidu.com/aistudio/datasetdetail/70452) | [Multi   temporal SceneWuHan ](http://sigma.whu.edu.cn/newspage.php?q=2019_03_26) | Change Detection   | 7200 * 6000                            | 4         | 380      | 9      | tif      | jpg             | 1m                 | __           | Satellite image           | IKONOSsensor                                         | 2019     | Wuhan University                                                  | http://sigma.whu.edu.cn/newspage.php?q=2019_03_26            | https://aistudio.baidu.com/aistudio/datasetdetail/70452  |
 | [4-8](https://aistudio.baidu.com/aistudio/datasetdetail/139421) | [DSIFN Dataset](https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images/tree/master/dataset) | Change Detection   | 512 * 512                              | 3         | 380      | 9      | tif      | png             | __                 | __           | Satellite image           | GoogleEarth                                          | 2019     | Wuhan University                                                  | https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images/tree/master/dataset | https://aistudio.baidu.com/aistudio/datasetdetail/139421 |
 | [4-9](https://aistudio.baidu.com/aistudio/datasetdetail/86660) | [High Resolution Semantic Change](https://rcdaudt.github.io/hrscd/) | Change Detection   | 10000 * 10000                          | 3         | 291      | 6      | png      | png             | __                 | __           | Aerial image           | IGS’s BDORTHO database                               | 2020     | ETHZürich                                                 | https://rcdaudt.github.io/hrscd/                             | https://aistudio.baidu.com/aistudio/datasetdetail/86660  |
-| [4-10](https://aistudio.baidu.com/aistudio/datasetdetail/73203) | [xBD](https://xview2.org/dataset)                            | Change Detection   | 1024 * 1024                            | 3、4、8   | 22068    | 4      | png      | json            | __                 | __           | Satellite image           | DigitalGlobe                                         | 2020     | MIT                                                       | https://xview2.org/dataset                                   | https://aistudio.baidu.com/aistudio/datasetdetail/73203  |
+| [4-10](https://aistudio.baidu.com/aistudio/datasetdetail/73203) | [xBD](https://xview2.org/dataset)                            | Change Detection   | 1024 * 1024                            | 3, 4, 8   | 22068    | 4      | png      | json            | __                 | __           | Satellite image           | DigitalGlobe                                         | 2020     | MIT                                                       | https://xview2.org/dataset                                   | https://aistudio.baidu.com/aistudio/datasetdetail/73203  |
 | [4-11](https://aistudio.baidu.com/aistudio/datasetdetail/75099) | [Google   dataset](https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery) | Change Detection   | 1000 * 1000~5000 * 5000                | 3         | 20       | 1      | tif      | png             | 0.55m              | __           | Satellite image           | GoogleEarth                                          | 2020     | IEEE                                                      | https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery | https://aistudio.baidu.com/aistudio/datasetdetail/75099  |
 | [4-12](https://aistudio.baidu.com/aistudio/datasetdetail/75459) | [LEVIR CD](https://justchenhao.github.io/LEVIR/)             | Change Detection   | 1024 * 1024                            | 3         | 1274     | 1      | png      | png             | 0.5m               | __           | Satellite image           | GoogleEarth                                          | 2020     | Beijing University of Aeronautics and Astronautics                                          | https://justchenhao.github.io/LEVIR/                         | https://aistudio.baidu.com/aistudio/datasetdetail/75459  |
 | [4-13](https://aistudio.baidu.com/aistudio/datasetdetail/53484) | [SenseEarth   Change Detection](https://rs.sensetime.com/competition/index.html#/info) | Change Detection   | 512 * 512                              | 3         | 7630     | 6      | png      | png             | 0.5~ 3m            | __           | Satellite image           | __                                                   | 2020     | Sensetime                                                  | https://rs.sensetime.com/competition/index.html#/info        | https://aistudio.baidu.com/aistudio/datasetdetail/53484  |
@@ -169,18 +169,18 @@
 | [4-17](https://aistudio.baidu.com/aistudio/datasetdetail/133833) | [S2Looking](https://www.rsaicp.com/portal/dataDetail?id=30)  | Change Detection   | 1024 * 1024                            | 3         | 8000     | 1      | png      | png             | __                 | __           | Aerial image           | Domestic independent property rights series satellites                                 | 2021     | Chinese Academy of Sciences                                                    | https://www.rsaicp.com/portal/dataDetail?id=30               | https://aistudio.baidu.com/aistudio/datasetdetail/133833 |
 | [4-18](https://aistudio.baidu.com/aistudio/datasetdetail/132093) | [LEVIR-CD2](https://www.rsaicp.com/portal/dataDetail?id=27)  | Change Detection   | 1024 * 1024                            | 3         | 890      | 1      | png      | png             | __                 | __           | Satellite image           | GoogleEarth                                          | 2021     | Chinese Academy of Sciences                                                    | https://www.rsaicp.com/portal/dataDetail?id=27               | https://aistudio.baidu.com/aistudio/datasetdetail/132093 |
 | 4-19                                                         | [[Fei Yueyun 2017\] Guangdong Government Data Innovation Competition](https://tianchi.aliyun.com/competition/entrance/231615/information) | Change Detection   | 3000~8106 * 15106                      | 4         | 8        | 1      | tif      | tif             | 0.65m              | __           | Satellite image           | quickbird                                            | 2017     | __                                                        | https://tianchi.aliyun.com/competition/entrance/231615/information |                                                          |
-| 4-20                                                         | [WHU dataset](https://ieeexplore.ieee.org/document/8444434)  | Change Detection   | 512 * 512                              | 3         | 8189     | 1      | __       | __              | 0.25~ 0.3m, 2.7m   | __           | Satellite imageAerial image | QuickBird, Worldview series, IKONOS,   ZY3, Aerial image | 2018     | Wuhan University                                                  | https://ieeexplore.ieee.org/document/8444434                 |                                                          |
+| 4-20                                                         | [WHU dataset](https://ieeexplore.ieee.org/document/8444434)  | Change Detection   | 512 * 512                              | 3         | 8189     | 1      | __       | __              | 0.25~ 0.3m, 2.7m   | __           | Satellite image, Aerial image | QuickBird, Worldview series, IKONOS,   ZY3, Aerial image | 2018     | Wuhan University                                                  | https://ieeexplore.ieee.org/document/8444434                 |                                                          |
 | 4-21                                                         | [Hi-UCD](https://arxiv.org/abs/2011.03247)                   | Change Detection   | 1024 * 1024                            | 3         | 2586     | 9      | __       | __              | 0.1m               | __           | __                 | __                                                   | 2020     | Wuhan University                                                  | https://arxiv.org/abs/2011.03247                             |                                                          |
 | 4-22                                                         | [rscupcd](http://rscup.bjxintong.com.cn/#/theme/4)           | Change Detection   | 960 * 960                              | 4         | 44       | 1      | tif      | tif             | __                 | __           | __                 | __                                                   | 2020     | __                                                        | http://rscup.bjxintong.com.cn/#/theme/4                      |                                                          |
 | 4-23                                                         | [gf2021 Building census and change detection data sets in high resolution visible light images](http://sw.chreos.org/challenge/dataset/5) | Change Detection   | 512 * 512                              | 3         | 5000     | 1      | png      | png             | __                 | __           | Satellite image           | GF2, JL1                                             | 2021     | Chinese Academy of Sciences                                                    | http://sw.chreos.org/challenge/dataset/5                     |                                                          |
 | 4-24                                                         | [WH-MAVS](http://sigma.whu.edu.cn/newspage.php?q=2021_06_27) | Change Detection   | 200*200                                | 3         | 47134    | 15     | __       | __              | 1.2m               | __           | Satellite image           | GoogleEarth                                          | 2021     | Wuhan University                                                  | http://sigma.whu.edu.cn/newspage.php?q=2021_06_27            |                                                          |
 | 4-25                                                         | [PRCV2021cd](https://captain-whu.github.io/PRCV2021_RS/dataset.html) | Change Detection   | 512 * 512                              | 3         | 16000    | 1      | png      | png             | __                 | __           | __                 | __                                                   | 2021     | PRCV                                                      | https://captain-whu.github.io/PRCV2021_RS/dataset.html       |                                                          |
 | [4-26](https://aistudio.baidu.com/aistudio/datasetdetail/126838) | [rsipac2021cd](http://rsipac.whu.edu.cn/subject_two)         | Change Detection   | 512 * 512                              | 3         | 6388     | 1      | tif      | png             | 1~ 2m              | __           | __                 | __                                                   | 2021     | Wuhan University                                                  | http://rsipac.whu.edu.cn/subject_two                         | https://aistudio.baidu.com/aistudio/datasetdetail/126838 |
-| [4-27](https://aistudio.baidu.com/aistudio/datasetdetail/89523) | [Change   Detection Dataset ](https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset) | Change Detection   | 984 * 740、600 * 500、390 * 200        | 224       | 6        | 3、5   | mat      | mat             | __                 | __           | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRISEO1Hyperion          | 2019     | __                                                        | https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset | https://aistudio.baidu.com/aistudio/datasetdetail/89523  |
+| [4-27](https://aistudio.baidu.com/aistudio/datasetdetail/89523) | [Change   Detection Dataset ](https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset) | Change Detection   | 984 * 740, 600 * 500, 390 * 200        | 224       | 6        | 3, 5   | mat      | mat             | __                 | __           | hyperspectral             | Airborne visual infrared imaging spectrometer/ AVIRIS, EO1Hyperion          | 2019     | __                                                        | https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset | https://aistudio.baidu.com/aistudio/datasetdetail/89523  |
 | [4-28](https://aistudio.baidu.com/aistudio/datasetdetail/98802) | [river chang dataset](http://crabwq.github.io/)              | Change Detection   | 463 * 241                              | 196       | 2        | 1      | mat      | mat             | 30m                | 10nm         | hyperspectral             | EO1Hyperion                                          | 2019     | Northwestern Polytechnical University                                              | http://crabwq.github.io/                                     | https://aistudio.baidu.com/aistudio/datasetdetail/98802  |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
 |                                                              |                                                              | __         | __                                     | __        | __       | __     | __       | __              | __                 | __           | __                 | __                                                   | __       | __                                                        |                                                              |                                                          |
-| [5-1](https://aistudio.baidu.com/aistudio/datasetdetail/87506) | [Dstl   Satellite Imagery Feature Detection](https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data) | Instance Segmentation   | 13348 * 3392、837 * 848、134 * 136     | 3、16     | 57       | 10     | tif      | json            | 0.31m, 1.24m, 7.5m | __           | Satellite image           | WorldView3                                           | 2017     | DefenceScience&TechnologyLaboratory                       | https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data | https://aistudio.baidu.com/aistudio/datasetdetail/87506  |
+| [5-1](https://aistudio.baidu.com/aistudio/datasetdetail/87506) | [Dstl   Satellite Imagery Feature Detection](https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data) | Instance Segmentation   | 13348 * 3392, 837 * 848, 134 * 136     | 3, 16     | 57       | 10     | tif      | json            | 0.31m, 1.24m, 7.5m | __           | Satellite image           | WorldView3                                           | 2017     | DefenceScience&TechnologyLaboratory                       | https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data | https://aistudio.baidu.com/aistudio/datasetdetail/87506  |
 | [5-2](https://aistudio.baidu.com/aistudio/datasetdetail/54858) | [Map Challenge](https://www.crowdai.org/challenges/mapping-challengehttps:/www.jianshu.com/p/90efc39975da) | Instance Segmentation   | 300 * 300                              | 3         | 341058   | 1      | jpg      | json            | __                 | __           | Satellite image           | GoogleMap                                            | 2018     | crowdAI                                                   | [https://www.crowdai.org/challenges/mapping-challengehttps://www.jianshu.com/p/90efc39975da](https://www.crowdai.org/challenges/mapping-challengehttps:/www.jianshu.com/p/90efc39975da) | https://aistudio.baidu.com/aistudio/datasetdetail/54858  |
 | [5-3](https://aistudio.baidu.com/aistudio/datasetdetail/76145) | [Open AI   Tanzania Building Footprint Segmentation Challenge](https://competitions.codalab.org/competitions/20100) | Instance Segmentation   | 40000± * 40000±                        | 3         | 13       | 3      | tif      | json            | __                 | __           | Aerial image           | Aerial image                                             | 2018     | jordan                                                    | https://competitions.codalab.org/competitions/20100          | https://aistudio.baidu.com/aistudio/datasetdetail/76145  |
 | [5-4](https://aistudio.baidu.com/aistudio/datasetdetail/105196) | [Sentinel 2 Cloud Mask Catalogue](https://zenodo.org/record/4172871) | Instance Segmentation   | 1022 * 1022                            | 13        | 513      | 3      | npy      | npy, shp        | 20m                | __           | Satellite image           | Sentinel2                                            | 2020     | __                                                        | https://zenodo.org/record/4172871                            | https://aistudio.baidu.com/aistudio/datasetdetail/105196 |

+ 1 - 1
docs/data/rs_data_en.md

@@ -24,7 +24,7 @@ In order to introduce the imaging principle of remote sensing image, the concept
 
 Raster formats are ideal for analysis that concentrates on spatial and temporal changes because each data value has a grid-based accessible location. This allows us to access the same geographic location in two or more different grids and compare their values.
 
-When the earth observation satellite takes a picture, the sensor will record the DN (Digital Number) value of different wavelength electromagnetic wave in the grid pixel. Through DN, the irradiance and reflectance of ground objects can be inversely calculated. The relationship between them is shown in the following formula, where $gain$ and $bias$ refer to the gain and offset of the sensor respectively; $L$ is irradiance, also known as radiant brightness value; $\rho$ is the reflectance of ground objects; $d_{s}$$E_{0}$ and $\theta$ respectively represent the distance between solar and earth astronomical units, solar irradiance and solar zenith angle.
+When the earth observation satellite takes a picture, the sensor will record the DN (Digital Number) value of different wavelength electromagnetic wave in the grid pixel. Through DN, the irradiance and reflectance of ground objects can be inversely calculated. The relationship between them is shown in the following formula, where $gain$ and $bias$ refer to the gain and offset of the sensor respectively; $L$ is irradiance, also known as radiant brightness value; $\rho$ is the reflectance of ground objects; $d_{s}$, $E_{0}$ and $\theta$ respectively represent the distance between solar and earth astronomical units, solar irradiance and solar zenith angle.
 
 $$
 L = gain * DN + bias \\

+ 6 - 6
docs/dev/dev_guide_en.md

@@ -16,15 +16,15 @@
 
 First, find the subdirectory (package) corresponding to the task in `paddlers/rs_models`. The mapping between the task and the subdirectory is as follows:
 
-- Change Detection:`cd`;
-- Scene Classification:`clas`;
-- Object Detection:`det`;
-- Image Restoration:`res`;
-- Image Segmentation:`seg`。
+- Change Detection: `cd`;
+- Scene Classification: `clas`;
+- Object Detection: `det`;
+- Image Restoration: `res`;
+- Image Segmentation: `seg`.
 
 Create a new file in the subdirectory and name it `{model name lowercase}.py`.  Write the complete model definition in the file.
 
-The new model must be a subclass of `paddle.nn.Layer`. For the tasks of image segmentation, object detection, scene classification and image restoration, relevant specifications formulated in development kit [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg)、[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)、[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) and [PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) should be followed respectively. **For change detection, scene classification and image segmentation tasks, the `num_classes` argument must be passed in the model construction to specify the number of output categories. For image restoration tasks, the `rs_factor` argument must be passed in during model construction to specify the super resolution scaling ratio (for non-super resolution models, this argument is set to `None`).** For the change detection task, the model definition should follow the same specification as the segmentation model, but with the following differences:
+The new model must be a subclass of `paddle.nn.Layer`. For the tasks of image segmentation, object detection, scene classification and image restoration, relevant specifications formulated in development kit [PaddleSeg](https://github.com/PaddlePaddle/PaddleSeg), [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection),[PaddleClas](https://github.com/PaddlePaddle/PaddleClas), and [PaddleGAN](https://github.com/PaddlePaddle/PaddleGAN) should be followed respectively. **For change detection, scene classification and image segmentation tasks, the `num_classes` argument must be passed in the model construction to specify the number of output categories. For image restoration tasks, the `rs_factor` argument must be passed in during model construction to specify the super resolution scaling ratio (for non-super resolution models, this argument is set to `None`).** For the change detection task, the model definition should follow the same specification as the segmentation model, but with the following differences:
 
 - The `forward()` method accepts three input parameters, namely `self`, `t1` and `t2`, where `t1` and `t2` represent the input image of the first and second two phases respectively.
 - For a multi-task change detection model (for example, the model outputs both change detection results and building extraction results of two phases), the class attribute `USE_MULTITASK_DECODER` needs to be specified as `True`. Also in the `OUT_TYPES` attribute set the label type for each element in the list of model forward output. Refer to the definition of `ChangeStar` model.

+ 12 - 12
docs/intro/model_cons_params_cn.md

@@ -38,7 +38,7 @@
 
 该基于PaddlePaddle的CDNet实现。
 
-该模型的原始文章见于 Pablo F. Alcantarilla, et al., "Street-View Change Detection with Deconvolut ional Networks"(https://link.springer.com/article/10.1007/s10514-018-9734-5).
+该模型的原始文章见于 Pablo F. Alcantarilla, et al., "Street-View Change Detection with Deconvolut ional Networks"(https://link.springer.com/article/10.1007/s10514-018-9734-5)
 
 | 参数名                     | 描述                              | 默认值     |
 |-------------------------| --------------------------------- | ---------- |
@@ -68,7 +68,7 @@
 
 基于PaddlePaddle实现的ChangeStar模型,其使用FarSeg编码器。
 
-该模型的原始文章见于 Z. Zheng, et al., "Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery"(https://arxiv.org/abs/2108.07002).
+该模型的原始文章见于 Z. Zheng, et al., "Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery"(https://arxiv.org/abs/2108.07002)
 
 | 参数名                     | 描述                                | 默认值      |
 |-------------------------|-----------------------------------|-------------|
@@ -87,7 +87,7 @@
 
 基于PaddlePaddle实现的DSAMNet,用于遥感变化检测。
 
-该模型的原始文章见于 Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection"(https://ieeexplore.ieee.org/document/9467555).
+该模型的原始文章见于 Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection"(https://ieeexplore.ieee.org/document/9467555)
 
 | 参数名                     | 描述                         | 默认值 |
 |-------------------------|----------------------------|--------|
@@ -102,7 +102,7 @@
 
 基于PaddlePaddle的DSIFN实现。
 
-该模型的原始文章见于 The original article refers to C. Zhang, et al., "A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images"(https://www.sciencedirect.com/science/article/pii/S0924271620301532).
+该模型的原始文章见于 The original article refers to C. Zhang, et al., "A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images"(https://www.sciencedirect.com/science/article/pii/S0924271620301532)
 
 | 参数名                   | 描述                   | 默认值 |
 |-------------------------|----------------------|--------|
@@ -115,7 +115,7 @@
 
 基于PaddlePaddle的FC-EF实现。
 
-该模型的原始文章见于 The original article refers to Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462).
+该模型的原始文章见于 The original article refers to Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462)
 
 | 参数名                     | 描述                          | 默认值 |
 |-------------------------|-------------------------------|--------|
@@ -131,7 +131,7 @@
 
 基于PaddlePaddle的FC-Siam-conc实现。
 
-该模型的原始文章见于 Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462).
+该模型的原始文章见于 Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462)
 
 | 参数名                     | 描述                          | 默认值 |
 |-------------------------|-------------------------------|--------|
@@ -146,7 +146,7 @@
 
 基于PaddlePaddle的FC-Siam-diff实现。
 
-该模型的原始文章见于 Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462).
+该模型的原始文章见于 Rodrigo Caye Daudt, et al. "Fully convolutional siamese networks for change detection"(https://arxiv.org/abs/1810.08462)
 
 | 参数名 | 描述          | 默认值 |
 | --- |-------------|  --- |
@@ -161,7 +161,7 @@
 
 基于PaddlePaddle的FCCDN实现。
 
-该模型的原始文章见于 Pan Chen, et al., "FCCDN: Feature Constraint Network for VHR Image Change Detection"(https://arxiv.org/pdf/2105.10860.pdf).
+该模型的原始文章见于 Pan Chen, et al., "FCCDN: Feature Constraint Network for VHR Image Change Detection"(https://arxiv.org/pdf/2105.10860.pdf)
 
 | 参数名                    | 描述         | 默认值 |
 |--------------------------|------------|--------|
@@ -175,7 +175,7 @@
 
 基于PaddlePaddle的P2V-CD实现。
 
-该模型的原始文章见于 M. Lin, et al. "Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images"(https://ieeexplore.ieee.org/document/9975266).
+该模型的原始文章见于 M. Lin, et al. "Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images"(https://ieeexplore.ieee.org/document/9975266)
 
 | 参数名                     | 描述         | 默认值 |
 |-------------------------|------------|--------|
@@ -188,7 +188,7 @@
 
 基于PaddlePaddle的SNUNet实现。
 
-该模型的原始文章见于 S. Fang, et al., "SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images" (https://ieeexplore.ieee.org/document/9355573).
+该模型的原始文章见于 S. Fang, et al., "SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images" (https://ieeexplore.ieee.org/document/9355573)
 
 | 参数名                     | 描述         | 默认值 |
 |-------------------------|------------| --- |
@@ -203,7 +203,7 @@
 
 基于PaddlePaddle的STANet实现。
 
-该模型的原始文章见于 H. Chen and Z. Shi, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection"(https://www.mdpi.com/2072-4292/12/10/1662).
+该模型的原始文章见于 H. Chen and Z. Shi, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection"(https://www.mdpi.com/2072-4292/12/10/1662)
 
 | 参数名                     | 描述                                                 | 默认值 |
 |-------------------------|----------------------------------------------------| --- |
@@ -217,7 +217,7 @@
 
 基于PaddlePaddle的CondenseNetV2实现。
 
-该模型的原始文章见于Yang L, Jiang H, Cai R, et al. “Condensenet v2: Sparse feature reactivation for deep networks” (https://arxiv.org/abs/2104.04382)
+该模型的原始文章见于Yang L, Jiang H, Cai R, et al. “Condensenet v2: Sparse feature reactivation for deep networks” (https://arxiv.org/abs/2104.04382)
 
 | 参数名                     | 描述                         | 默认值 |
 |-------------------------|----------------------------| --- |

+ 3 - 3
docs/intro/model_cons_params_en.md

@@ -49,7 +49,7 @@ The original article refers to Pablo F. Alcantarilla, et al., "Street-View Chang
 
 The ChangeFormer implementation based on PaddlePaddle.
 
-The original article refers to Wele Gedara Chaminda Bandara,Vishal M. Patel,“A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION”(https://arxiv.org/pdf/2201.01293.pdf)
+The original article refers to Wele Gedara Chaminda Bandara, Vishal M. Patel, “A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION”(https://arxiv.org/pdf/2201.01293.pdf).
 
 | Parameter Name | Description                                                                 | Default Value |
 |--------------------------------|-----------------------------------------------------------------------------|--------------|
@@ -182,8 +182,8 @@ The original article refers to S. Fang, et al., "SNUNet-CD: A Densely Connected
 | arg_name               | Description                                     | default  |
 |------------------------|-------------------------------------------------|------|
 | `in_channels (int)`    | Number of channels of the input image           |      |
-| `num_classesint)`      | Number of target classes                        |      |
-| `width (intoptional)` | Output channels of the first convolutional layer | 32   |
+| `num_classes (int)`      | Number of target classes                        |      |
+| `width (int, optional)` | Output channels of the first convolutional layer | 32   |
 
 ## `STANet`
 

+ 0 - 4
docs/intro/model_zoo_cn.md

@@ -42,7 +42,3 @@ PaddleRS目前已支持的全部模型如下(标注\*的为遥感专用模型
 | 图像分割 | Fast-SCNN | 是 |
 | 图像分割 | HRNet | 是 |
 | 图像分割 | UNet | 是 |
-
-## 构造模型训练器
-
-参见[此文档](model_cons_params_cn.md)。

+ 0 - 4
docs/intro/model_zoo_en.md

@@ -42,7 +42,3 @@ All models currently supported by PaddleRS are listed below (those marked \* are
 | Image Segmentation | Fast-SCNN | Yes |
 | Image Segmentation | HRNet | Yes |
 | Image Segmentation | UNet | Yes |
-
-## Model Trainer Construction
-
-See [this document](model_cons_params_en.md).

+ 3 - 3
docs/intro/transforms_cons_params_cn.md

@@ -12,9 +12,9 @@ PaddleRS所支持的数据变换算子可见[此文档](https://github.com/Paddl
 
 | 参数名             | 描述                                                                                                                      | 默认值  |
 |-----------------|-------------------------------------------------------------------------------------------------------------------------|------|
-|`index_type (str)`| 遥感索引类型。受支持的索引类型 (https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py)。                 |      |
-|`band_indexes (dict,可选)`| 波段名称到波段索引的映射(从1开始) (https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py)。              | `None` |
-|`satellite (str,可选)`| 卫星类型。设置后,将自动确定相应的带指数。请参阅支援卫星 (https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py)。 | `None` |
+|`index_type (str)`| 遥感指数类型。请在[此链接](https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py)查看PaddleRS支持的全部遥感指数类型。                |      |
+|`band_indexes (dict,可选)`| 波段名称到波段索引的映射(从1开始)。请在[此链接](https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py)查看PaddleRS支持的全部波段名称。              | `None` |
+|`satellite (str,可选)`| 卫星类型。设置后,将自动确定相应的带指数。请在[此链接](https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py)查看PaddleRS支持的全部卫星类型。 | `None` |
 
 ## `CenterCrop`
 

+ 47 - 47
docs/intro/transforms_cons_params_en.md

@@ -13,8 +13,8 @@ Append remote sensing index to input image(s).
 | Parameter Name             | Description                                                                                                                                        | Default Value       |
 |-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
 |`index_type (str)`| Type of remote sensinng index. See supported index types in https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py . |           |
-|`band_indexes (dictoptional)`|Mapping of band names to band indices (starting from 1)`. See band names in  https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py                                         | `None`      |
-|`satellite (stroptional)`|Type of satellite. If set, band indices will be automatically determined accordingly. See supported satellites in https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py                             | `None`      |
+|`band_indexes (dict, optional)`|Mapping of band names to band indices (starting from 1). See supported band names in  https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/indices.py                                         | `None`      |
+|`satellite (str, optional)`|Type of satellite. If set, band indices will be automatically determined accordingly. See supported satellites in https://github.com/PaddlePaddle/PaddleRS/tree/develop/paddlers/transforms/satellites.py                             | `None`      |
 
 
 ## `CenterCrop`
@@ -35,7 +35,7 @@ Append remote sensing index to input image(s).
 
 | Parameter Name             | Description                                   | Default Value   |
 |-----------------|---------------------------------------------------|-------|
-|`gamma (booloptional)`| Use gamma correction or not  | `False` |
+|`gamma (bool, optional)`| Use gamma correction or not  | `False` |
 
 ## `MatchRadiance`
 
@@ -43,7 +43,7 @@ Perform relative radiometric correction between bi-temporal images.
 
 | Parameter Name             | Description                                                                                                                                                                                                                                                                 | Default Value |
 |-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
-|`method (stroptional)`| Method used to match the radiance of the bi-temporal images. Choices are {`'hist'`, `'lsr'`, `'fft'`}. `'hist'` stands for histogram matching, `'lsr'` stands for least-squares regression, and `'fft'` replaces the low-frequency components of the image to match the reference image. | `'hist'` |
+|`method (str, optional)`| Method used to match the radiance of the bi-temporal images. Choices are {`'hist'`, `'lsr'`, `'fft'`}. `'hist'` stands for histogram matching, `'lsr'` stands for least-squares regression, and `'fft'` replaces the low-frequency components of the image to match the reference image. | `'hist'` |
 
 
 ## `MixupImage`
@@ -52,8 +52,8 @@ Mixup two images and their gt_bbbox/gt_score.
 
 | Parameter Name             | Description                                     | Default Value |
 |-----------------|-----------------------------------------------------|-----|
-|`alpha (floatoptional)`| Alpha parameter of beta distribution. | `1.5` |
-|`beta (floatoptional)` |Beta parameter of beta distribution. | `1.5` |
+|`alpha (float, optional)`| Alpha parameter of beta distribution. | `1.5` |
+|`beta (float, optional)` |Beta parameter of beta distribution. | `1.5` |
 
 ## `Normalize`
 
@@ -66,11 +66,11 @@ Mixup two images and their gt_bbbox/gt_score.
 
 | Parameter Name      | Description                                                              | Default Value                          |
 |---------------------|--------------------------------------------------------------------------|------------------------------|
-| `mean (list[float] \| tuple[float]optional)`  | Mean of input image(s)                                                   | `[0.485,0.456,0.406]` |
-| `std (list[float] \| tuple[float]optional)`   | Standard deviation of input image(s)                                     | `[0.229,0.224,0.225]` |
-| `min_val (list[float] \| tuple[float]optional)` | Inimum value of input image(s). If `None`, use `0` for all channels.     |    `None`      |
-| `max_val (list[float] \| tuple[float]optional)` | Maximum value of input image(s). If `None`, use `255`. for all channels. |  `None`        |
-| `apply_to_tar (booloptional)` \| Whether to apply transformation to the target image                      | `True`                         |
+| `mean (list[float] \| tuple[float], optional)`  | Mean of input image(s)                                                   | `[0.485,0.456,0.406]` |
+| `std (list[float] \| tuple[float], optional)`   | Standard deviation of input image(s)                                     | `[0.229,0.224,0.225]` |
+| `min_val (list[float] \| tuple[float], optional)` | Inimum value of input image(s). If `None`, use `0` for all channels.     |    `None`      |
+| `max_val (list[float] \| tuple[float], optional)` | Maximum value of input image(s). If `None`, use `255`. for all channels. |  `None`        |
+| `apply_to_tar (bool, optional)` \| Whether to apply transformation to the target image                      | `True`                         |
 
 ## `Pad`
 
@@ -78,11 +78,11 @@ Pad image to a specified size or multiple of `size_divisor`.
 
 | Parameter Name           | Description                                                                                                                                                                                                          | Default Value              |
 |--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
-| `target_size (list[int] \| tuple[int]optional)`     | Image target size, if `None`, pad to multiple of size_divisor.                                                                                                                                                         | `None`               |
-| `pad_mode (intoptional)` | Currently only four modes are supported:[-1, 0, 1, 2]. if `-1`, use specified offsets. If `0`, only pad to right and bottom If `1`, pad according to center. If `2`, only pad left and top.   | `0`                  |
-| `offset (list[int] \| Noneoptional)`                |  Padding offsets.                                                                                                                                                                                                              | `None`               |
-| `im_padding_value (list[float] \| tuple[float])` | RGB value of padded area.                                                                                                                                                                                                        | `127.5,127.5,127.5)` |
-| `label_padding_value (intoptional)` |Filling value for the mask.                                                                                                                                                                                                              | `255`                  |
+| `target_size (list[int] \| tuple[int], optional)`     | Image target size, if `None`, pad to multiple of size_divisor.                                                                                                                                                         | `None`               |
+| `pad_mode (int, optional)` | Currently only four modes are supported:[-1, 0, 1, 2]. if `-1`, use specified offsets. If `0`, only pad to right and bottom If `1`, pad according to center. If `2`, only pad left and top.   | `0`                  |
+| `offset (list[int] \| None, optional)`                |  Padding offsets.                                                                                                                                                                                                              | `None`               |
+| `im_padding_value (list[float] \| tuple[float])` | RGB value of padded area.                                                                                                                                                                                                        | `(127.5,127.5,127.5)` |
+| `label_padding_value (int, optional)` |Filling value for the mask.                                                                                                                                                                                                              | `255`                  |
 | `size_divisor (int)`     | Image width and height after padding will be a multiple of `size_divisor`.                                                                                                                                                                       |                      |
 
 ## `RandomBlur`
@@ -106,12 +106,12 @@ Randomly blur input image(s).
 | Parameter Name   | Description                                                                   | Default Value                     |
 |------------------|-------------------------------------------------------------------------------|-------------------------|
 | `crop_size (int \| list[int] \| tuple[int])` | Target size of the cropped area. If `None`, the cropped area will not be resized. | `None`                    |
-| `aspect_ratio (list[float]optional)` | Aspect ratio of cropped region in [min, max] format.                          | `[.5, 2.]`                |
-| `thresholds (list[float]optional)` | IoU thresholds to decide a valid bbox crop.                                   | `[.0,.1, .3, .5, .7, .9]` |
+| `aspect_ratio (list[float], optional)` | Aspect ratio of cropped region in [min, max] format.                          | `[.5, 2.]`                |
+| `thresholds (list[float], optional)` | IoU thresholds to decide a valid bbox crop.                                   | `[.0,.1,  .3,  .5,  .7,  .9]` |
 | `scaling (list[float], optional)` | Ratio between the cropped region and the original image in [min, max] format. | `[.3, 1.]`                |
-| `num_attempts (intoptional)` | Max number of tries before giving up.                                         | `50`                      |
-| `allow_no_crop (booloptional)` | Whether returning without doing crop is allowed.                              | `True`                    |
-| `cover_all_box (booloptional)` | Whether to force to cover the entire target box.                              | `False`                   |
+| `num_attempts (int, optional)` | Max number of tries before giving up.                                         | `50`                      |
+| `allow_no_crop (bool, optional)` | Whether returning without doing crop is allowed.                              | `True`                    |
+| `cover_all_box (bool, optional)` | Whether to force to cover the entire target box.                              | `False`                   |
 
 ## `RandomDistort`
 
@@ -119,17 +119,17 @@ Random color distortion.
 
 | Parameter Name                       | Description                                                     | Default Value   |
 |----------------------------|-----------------------------------------------------------------|-------|
-| `brightness_range (floatoptional)` | Range of brightness distortion.                                 | `.5`    |
-| `brightness_prob (floatoptional)` | Probability of brightness distortion.                           | `.5`    |
+| `brightness_range (float, optional)` | Range of brightness distortion.                                 | `.5`    |
+| `brightness_prob (float, optional)` | Probability of brightness distortion.                           | `.5`    |
 | `contrast_range (float, optional)` | Range of contrast distortion.                                   | `.5`    |
 | `contrast_prob (float, optional)` | Probability of contrast distortion.                             | `.5`    |
 | `saturation_range (float,optional)` | Range of saturation distortion.                                 | `.5`    |
-| `saturation_prob (floatoptional)` | Probability of saturation distortion.                           | `.5`    |
-| `hue_range (floatoptional)` | Range of hue distortion.                                        | `.5`    |
-| `hue_probb (floatoptional)`| Probability of hue distortion.                                  | `.5`    |
-| `random_apply (booloptional)` | Apply the transformation in random (yolo) or fixed (SSD) order. | `True`  |
-| `count (intoptional)`  | Count used to control the distortion                | `4`     |
-| `shuffle_channel (booloptional)` | Whether to swap channels randomly.                                           | `False` |
+| `saturation_prob (float, optional)` | Probability of saturation distortion.                           | `.5`    |
+| `hue_range (float, optional)` | Range of hue distortion.                                        | `.5`    |
+| `hue_probb (float, optional)`| Probability of hue distortion.                                  | `.5`    |
+| `random_apply (bool, optional)` | Apply the transformation in random (yolo) or fixed (SSD) order. | `True`  |
+| `count (int, optional)`  | Count used to control the distortion                | `4`     |
+| `shuffle_channel (bool, optional)` | Whether to swap channels randomly.                                           | `False` |
 
 
 ## `RandomExpand`
@@ -138,10 +138,10 @@ Randomly expand the input by padding according to random offsets.
 
 | Parameter Name                  | Description                                    | Default Value                 |
 |---------------------------------|----------------------------------------------------|---------------------|
-| `upper_ratio (floatoptional)`  | Maximum ratio to which the original image is expanded. | `4`                   |
-| `probb (floatoptional)`        |Probability of apply expanding. | `.5`                  |
-| `im_padding_value (list[float] \| tuple[float]optional)` |  RGB filling value for the image  | `(127.5,127.5,127.5)` |
-| `label_padding_value (intoptional)` | Filling value for the mask.  | `255`    |
+| `upper_ratio (float, optional)`  | Maximum ratio to which the original image is expanded. | `4`                   |
+| `probb (float, optional)`        |Probability of apply expanding. | `.5`                  |
+| `im_padding_value (list[float] \| tuple[float], optional)` |  RGB filling value for the image  | `(127.5,127.5,127.5)` |
+| `label_padding_value (int, optional)` | Filling value for the mask.  | `255`    |
 
 ## `RandomHorizontalFlip`
 
@@ -149,7 +149,7 @@ Randomly flip the input horizontally.
 
 | Parameter Name                                              | Description        | Default Value                |
 |--------------------------------------------------|-----------|---------------------|
-| `probb (floatoptional)`                           | Probability of flipping the input   | `.5`                  |
+| `probb (float, optional)`                           | Probability of flipping the input   | `.5`                  |
 
 ## `RandomResize`
 
@@ -160,7 +160,7 @@ Resize input to random sizes.
 | Parameter Name            | Description                                                          | Default Value                 |
 |---------------------------|----------------------------------------------------------------------|---------------------|
 | `Target_sizes (list[int] \| list[list \| tuple] \| tuple [list \| tuple])` | Multiple target sizes, each of which should be int, list, or tuple.  | `.5`                  |
-| `interp (stroptional)`   | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}. |   `'LINEAR'`                  ||
+| `interp (str, optional)`   | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}. |   `'LINEAR'`                  ||
 
 
 ## `RandomResizeByShort`
@@ -172,8 +172,8 @@ Resize input to random sizes while keeping the aspect ratio.
 | Parameter Name     | Description        | Default Value |
 |--------------------|-----------|-----|
 | `short_sizes (int \| list[int])` | Target size of the shorter side of the image(s).| `.5`  |
-| `max_size (intoptional)` |Upper bound of longer side of the image(s). If `max_size` is -1, no upper bound will be applied.    | `-1`  |
-| `interp (stroptional)` |  Interpolation method for resizing image(s). One of {'`NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.  | `'LINEAR'`    |
+| `max_size (int, optional)` |Upper bound of longer side of the image(s). If `max_size` is -1, no upper bound will be applied.    | `-1`  |
+| `interp (str, optional)` |  Interpolation method for resizing image(s). One of {'`NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.  | `'LINEAR'`    |
 
 ## `RandomScaleAspect`
 
@@ -192,7 +192,7 @@ Randomly swap multi-temporal images.
 
 | Parameter Name                                                               | Description        | Default Value |
 |-------------------------------------------------------------------|-----------|-----|
-|`probb (floatoptional)`| Probability of swapping the input images.| `0.2` |
+|`probb (float, optional)`| Probability of swapping the input images.| `0.2` |
 
 ## `RandomVerticalFlip`
 Randomly flip the input vertically.
@@ -200,7 +200,7 @@ Randomly flip the input vertically.
 
 | Parameter Name                                                              | Description        | Default Value |
 |------------------------------------------------------------------|-----------|-----|
-|`prob (floatoptional)`| Probability of flipping the input| `.5`  |
+|`prob (float, optional)`| Probability of flipping the input| `.5`  |
 
 
 ## `ReduceDim`
@@ -209,7 +209,7 @@ Use PCA to reduce the dimension of input image(s).
 | Parameter Name                                                               | Description                                          | Default Value  |
 |-------------------------------------------------------------------|------------------------------------------------------|------|
 |`joblib_path (str)`| Path of *.joblib file of PCA                         |      |
-|`apply_to_tar (booloptional)` | Whether to apply transformation to the target image. | `True` |
+|`apply_to_tar (bool, optional)` | Whether to apply transformation to the target image. | `True` |
 
 
 ## `Resize`
@@ -222,8 +222,8 @@ Resize input.
 | Parameter Name     | Description                                                                                                                                                          | Default Value      |
 |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
 | `target_size (int \| list[int] \| tuple[int])` | Target size. If it is an integer, the target height and width will be both set to `target_size`. Otherwise,  `target_size` represents [target height, target width]. |          |
-| `interp (stroptional)` | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.                                         | `'LINEAR'` |
-| `keep_ratio (booloptional)` | If `True`, the scaling factor of width and height will be set to same value, and height/width of the resized image will be not  greater than the target width/height. | `False`    |
+| `interp (str, optional)` | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.                                         | `'LINEAR'` |
+| `keep_ratio (bool, optional)` | If `True`, the scaling factor of width and height will be set to same value, and height/width of the resized image will be not  greater than the target width/height. | `False`    |
 
 ## `ResizeByLong`
 Resize the input image, keeping the aspect ratio unchanged (calculate the scaling factor based on the long side).
@@ -234,7 +234,7 @@ Resize the input image, keeping the aspect ratio unchanged (calculate the scalin
 | Parameter Name                                        | Description        | Default Value      |
 |--------------------------------------------|-----------|----------|
 | `long_size (int)`|The size of the target on the longer side of the image.|          |
-| `interp (stroptional)`                    | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.  | `'LINEAR'` |
+| `interp (str, optional)`                    | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.  | `'LINEAR'` |
 
 ## `ResizeByShort`
 Resize input while keeping the aspect ratio.
@@ -245,8 +245,8 @@ Resize input while keeping the aspect ratio.
 | Parameter Name              | Description                                                                                      | Default Value      |
 |------------------|--------------------------------------------------------------------------------------------------|----------|
 | `short_size (int)` | Target size of the shorter side of the image(s).                                                 |          |
-| `mamax_size (intoptional)` | Upper bound of longer side of the image(s). If `max_size` is -1, no upper bound will be applied. | `-1`       |
-| `interp (stroptional)`  | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.          | `'LINEAR'` |
+| `mamax_size (int, optional)` | Upper bound of longer side of the image(s). If `max_size` is -1, no upper bound will be applied. | `-1`       |
+| `interp (str, optional)`  | Interpolation method for resizing image(s). One of {`'NEAREST'`, `'LINEAR'`, `'CUBIC'`, `'AREA'`, `'LANCZOS4'`, `'RANDOM'`}.          | `'LINEAR'` |
 
 
 ## `SelectBand`
@@ -254,5 +254,5 @@ Select a set of bands of input image(s).
 
 | Parameter Name              | Description                                          | Default Value      |
 |------------------|------------------------------------------------------|----------|
-| `band_list (listoptional)` | Bands to select (band index starts from 1).          | `[1,2,3]`  |
-| `apply_to_tar (booloptional)`| Whether to apply transformation to the target image. | `True`     |
+| `band_list (list, optional)` | Bands to select (band index starts from 1).          | `[1,2,3]`  |
+| `apply_to_tar (bool, optional)`| Whether to apply transformation to the target image. | `True`     |

+ 1 - 1
tutorials/train/README_EN.md

@@ -56,7 +56,7 @@ python -m paddle.distributed.launch --gpus 0,1 tutorials/train/semantic_segmenta
 
 ## Visualize Training Metrics via VisualDL
 
-Set the `use_vdl` argument passed to the `train()` method to `True`, and then the training log will be automatically saved in VisualDL format in a subdirectory named `vdl_log` under the directory specified by `save_dir`(a user-specified path) during the model training process. You can run the following command to start the VisualDL service and view the indicators and metrics. We also take DeepLab V3+ as an example:
+Set the `use_vdl` argument passed to the `train()` method to `True`, and then the training log will be automatically saved in VisualDL format in a subdirectory named `vdl_log` under the directory specified by `save_dir` (a user-specified path) during the model training process. You can run the following command to start the VisualDL service and view the indicators and metrics. We also take DeepLab V3+ as an example:
 
 ```shell
 # The specified port number is 8001