|
@@ -19,6 +19,7 @@ from abc import ABCMeta, abstractmethod
|
|
|
from collections import Counter, defaultdict
|
|
|
|
|
|
import numpy as np
|
|
|
+from tqdm import tqdm
|
|
|
|
|
|
import paddlers.utils.logging as logging
|
|
|
|
|
@@ -31,6 +32,7 @@ class Cache(metaclass=ABCMeta):
|
|
|
|
|
|
class SlowCache(Cache):
|
|
|
def __init__(self):
|
|
|
+ super(SlowCache, self).__init__()
|
|
|
self.cache = defaultdict(Counter)
|
|
|
|
|
|
def push_pixel(self, i, j, l):
|
|
@@ -66,6 +68,7 @@ class SlowCache(Cache):
|
|
|
|
|
|
class ProbCache(Cache):
|
|
|
def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'):
|
|
|
+ super(ProbCache, self).__init__()
|
|
|
self.cache = None
|
|
|
self.h = h
|
|
|
self.w = w
|
|
@@ -116,20 +119,139 @@ class ProbCache(Cache):
|
|
|
self._alloc_memory(nc)
|
|
|
self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map
|
|
|
|
|
|
- def roll_cache(self):
|
|
|
+ def roll_cache(self, shift):
|
|
|
if self.order == 'c':
|
|
|
- self.cache[:-self.sh] = self.cache[self.sh:]
|
|
|
- self.cache[-self.sh:, :] = 0
|
|
|
+ self.cache[:-shift] = self.cache[shift:]
|
|
|
+ self.cache[-shift:, :] = 0
|
|
|
elif self.order == 'f':
|
|
|
- self.cache[:, :-self.sw] = self.cache[:, self.sw:]
|
|
|
- self.cache[:, -self.sw:] = 0
|
|
|
+ self.cache[:, :-shift] = self.cache[:, shift:]
|
|
|
+ self.cache[:, -shift:] = 0
|
|
|
|
|
|
def get_block(self, i_st, j_st, h, w):
|
|
|
return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2)
|
|
|
|
|
|
|
|
|
-def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
- transforms, invalid_value, merge_strategy, batch_size):
|
|
|
+class OverlapProcessor(metaclass=ABCMeta):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw):
|
|
|
+ super(OverlapProcessor, self).__init__()
|
|
|
+ self.h = h
|
|
|
+ self.w = w
|
|
|
+ self.ch = ch
|
|
|
+ self.cw = cw
|
|
|
+ self.sh = sh
|
|
|
+ self.sw = sw
|
|
|
+
|
|
|
+ @abstractmethod
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+class KeepFirstProcessor(OverlapProcessor):
|
|
|
+ def __init__(self, h, w, ch, cw, sh, sw, ds, inval=255):
|
|
|
+ super(KeepFirstProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
+ self.ds = ds
|
|
|
+ self.inval = inval
|
|
|
+
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ rd_block = self.ds.ReadAsArray(xoff, yoff, self.cw, self.ch)
|
|
|
+ mask = rd_block != self.inval
|
|
|
+ pred = np.where(mask, rd_block, pred)
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+class KeepLastProcessor(OverlapProcessor):
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+class AccumProcessor(OverlapProcessor):
|
|
|
+ def __init__(self,
|
|
|
+ h,
|
|
|
+ w,
|
|
|
+ ch,
|
|
|
+ cw,
|
|
|
+ sh,
|
|
|
+ sw,
|
|
|
+ dtype=np.float16,
|
|
|
+ assign_weight=True):
|
|
|
+ super(AccumProcessor, self).__init__(h, w, ch, cw, sh, sw)
|
|
|
+ self.cache = ProbCache(h, w, ch, cw, sh, sw, dtype=dtype, order='c')
|
|
|
+ self.prev_yoff = None
|
|
|
+ self.assign_weight = assign_weight
|
|
|
+
|
|
|
+ def process_pred(self, out, xoff, yoff):
|
|
|
+ if self.prev_yoff is not None and yoff != self.prev_yoff:
|
|
|
+ if yoff < self.prev_yoff:
|
|
|
+ raise RuntimeError
|
|
|
+ self.cache.roll_cache(yoff - self.prev_yoff)
|
|
|
+ pred = out['label_map']
|
|
|
+ pred = pred[:self.ch, :self.cw]
|
|
|
+ prob = out['score_map']
|
|
|
+ prob = prob[:self.ch, :self.cw]
|
|
|
+ if self.assign_weight:
|
|
|
+ prob = assign_border_weights(prob, border_ratio=0.25, inplace=True)
|
|
|
+ self.cache.update_block(0, xoff, self.ch, self.cw, prob)
|
|
|
+ pred = self.cache.get_block(0, xoff, self.ch, self.cw)
|
|
|
+ self.prev_yoff = yoff
|
|
|
+ return pred
|
|
|
+
|
|
|
+
|
|
|
+def assign_border_weights(array, weight=0.5, border_ratio=0.25, inplace=True):
|
|
|
+ if not inplace:
|
|
|
+ array = array.copy()
|
|
|
+ h, w = array.shape[:2]
|
|
|
+ hm, wm = int(h * border_ratio), int(w * border_ratio)
|
|
|
+ array[:hm] *= weight
|
|
|
+ array[-hm:] *= weight
|
|
|
+ array[:, :wm] *= weight
|
|
|
+ array[:, -wm:] *= weight
|
|
|
+ return array
|
|
|
+
|
|
|
+
|
|
|
+def read_block(ds,
|
|
|
+ xoff,
|
|
|
+ yoff,
|
|
|
+ xsize,
|
|
|
+ ysize,
|
|
|
+ tar_xsize=None,
|
|
|
+ tar_ysize=None,
|
|
|
+ pad_val=0):
|
|
|
+ if tar_xsize is None:
|
|
|
+ tar_xsize = xsize
|
|
|
+ if tar_ysize is None:
|
|
|
+ tar_ysize = ysize
|
|
|
+ # Read data from dataset
|
|
|
+ block = ds.ReadAsArray(xoff, yoff, xsize, ysize)
|
|
|
+ c, real_ysize, real_xsize = block.shape
|
|
|
+ assert real_ysize == ysize and real_xsize == xsize
|
|
|
+ # [c, h, w] -> [h, w, c]
|
|
|
+ block = block.transpose((1, 2, 0))
|
|
|
+ if (real_ysize, real_xsize) != (tar_ysize, tar_xsize):
|
|
|
+ if real_ysize >= tar_ysize or real_xsize >= tar_xsize:
|
|
|
+ raise ValueError
|
|
|
+ padded_block = np.full(
|
|
|
+ (tar_ysize, tar_xsize, c), fill_value=pad_val, dtype=block.dtype)
|
|
|
+ # Fill
|
|
|
+ padded_block[:real_ysize, :real_xsize] = block
|
|
|
+ return padded_block
|
|
|
+ else:
|
|
|
+ return block
|
|
|
+
|
|
|
+
|
|
|
+def slider_predict(predict_func,
|
|
|
+ img_file,
|
|
|
+ save_dir,
|
|
|
+ block_size,
|
|
|
+ overlap,
|
|
|
+ transforms,
|
|
|
+ invalid_value,
|
|
|
+ merge_strategy,
|
|
|
+ batch_size,
|
|
|
+ show_progress=False):
|
|
|
"""
|
|
|
Do inference using sliding windows.
|
|
|
|
|
@@ -153,6 +275,8 @@ def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
traversal order, respectively. 'accum' means determining the class
|
|
|
of an overlapping pixel according to accumulated probabilities.
|
|
|
batch_size (int): Batch size used in inference.
|
|
|
+ show_progress (bool, optional): Whether to show prediction progress with a
|
|
|
+ progress bar. Defaults to True.
|
|
|
"""
|
|
|
|
|
|
try:
|
|
@@ -175,10 +299,6 @@ def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
raise ValueError(
|
|
|
"`overlap` must be a tuple/list of length 2 or an integer.")
|
|
|
|
|
|
- if merge_strategy not in ('keep_first', 'keep_last', 'accum'):
|
|
|
- raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
- format(merge_strategy))
|
|
|
-
|
|
|
step = np.array(
|
|
|
block_size, dtype=np.int32) - np.array(
|
|
|
overlap, dtype=np.int32)
|
|
@@ -234,29 +354,50 @@ def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
# When there is no overlap or the whole image is used as input,
|
|
|
# use 'keep_last' strategy as it introduces least overheads
|
|
|
merge_strategy = 'keep_last'
|
|
|
- if merge_strategy == 'accum':
|
|
|
- cache = ProbCache(height, width, *block_size[::-1], *step[::-1])
|
|
|
|
|
|
+ if merge_strategy == 'keep_first':
|
|
|
+ overlap_processor = KeepFirstProcessor(
|
|
|
+ height,
|
|
|
+ width,
|
|
|
+ *block_size[::-1],
|
|
|
+ *step[::-1],
|
|
|
+ band,
|
|
|
+ inval=invalid_value)
|
|
|
+ elif merge_strategy == 'keep_last':
|
|
|
+ overlap_processor = KeepLastProcessor(height, width, *block_size[::-1],
|
|
|
+ *step[::-1])
|
|
|
+ elif merge_strategy == 'accum':
|
|
|
+ overlap_processor = AccumProcessor(height, width, *block_size[::-1],
|
|
|
+ *step[::-1])
|
|
|
+ else:
|
|
|
+ raise ValueError("{} is not a supported stragegy for block merging.".
|
|
|
+ format(merge_strategy))
|
|
|
+
|
|
|
+ xsize, ysize = block_size
|
|
|
+ num_blocks = math.ceil(height / step[1]) * math.ceil(width / step[0])
|
|
|
+ cnt = 0
|
|
|
+ if show_progress:
|
|
|
+ pb = tqdm(total=num_blocks)
|
|
|
batch_data = []
|
|
|
batch_offsets = []
|
|
|
for yoff in range(0, height, step[1]):
|
|
|
for xoff in range(0, width, step[0]):
|
|
|
- xsize, ysize = block_size
|
|
|
if xoff + xsize > width:
|
|
|
xoff = width - xsize
|
|
|
+ is_end_of_row = True
|
|
|
+ else:
|
|
|
+ is_end_of_row = False
|
|
|
if yoff + ysize > height:
|
|
|
yoff = height - ysize
|
|
|
+ is_end_of_col = True
|
|
|
+ else:
|
|
|
+ is_end_of_col = False
|
|
|
|
|
|
- is_end_of_col = yoff + ysize >= height
|
|
|
- is_end_of_row = xoff + xsize >= width
|
|
|
-
|
|
|
- # Read and fill
|
|
|
- im = src_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
- (1, 2, 0))
|
|
|
+ # Read
|
|
|
+ im = read_block(src_data, xoff, yoff, xsize, ysize)
|
|
|
|
|
|
if isinstance(img_file, tuple):
|
|
|
- im2 = src2_data.ReadAsArray(xoff, yoff, xsize, ysize).transpose(
|
|
|
- (1, 2, 0))
|
|
|
+ im2 = read_block(src2_data, xoff, yoff, xsize, ysize)
|
|
|
batch_data.append((im, im2))
|
|
|
else:
|
|
|
batch_data.append(im)
|
|
@@ -276,24 +417,8 @@ def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
batch_out = predict_func(batch_data, transforms=transforms)
|
|
|
|
|
|
for out, (xoff_, yoff_) in zip(batch_out, batch_offsets):
|
|
|
- pred = out['label_map'].astype('uint8')
|
|
|
- pred = pred[:ysize, :xsize]
|
|
|
-
|
|
|
- # Deal with overlapping pixels
|
|
|
- if merge_strategy == 'keep_first':
|
|
|
- rd_block = band.ReadAsArray(xoff_, yoff_, xsize, ysize)
|
|
|
- mask = rd_block != invalid_value
|
|
|
- pred = np.where(mask, rd_block, pred)
|
|
|
- elif merge_strategy == 'keep_last':
|
|
|
- pass
|
|
|
- elif merge_strategy == 'accum':
|
|
|
- prob = out['score_map']
|
|
|
- prob = prob[:ysize, :xsize]
|
|
|
- cache.update_block(0, xoff_, ysize, xsize, prob)
|
|
|
- pred = cache.get_block(0, xoff_, ysize, xsize)
|
|
|
- if xoff_ + xsize >= width:
|
|
|
- cache.roll_cache()
|
|
|
-
|
|
|
+ # Get processed result
|
|
|
+ pred = overlap_processor.process_pred(out, xoff_, yoff_)
|
|
|
# Write to file
|
|
|
band.WriteArray(pred, xoff_, yoff_)
|
|
|
|
|
@@ -301,5 +426,12 @@ def slider_predict(predict_func, img_file, save_dir, block_size, overlap,
|
|
|
batch_data.clear()
|
|
|
batch_offsets.clear()
|
|
|
|
|
|
+ cnt += 1
|
|
|
+
|
|
|
+ if show_progress:
|
|
|
+ pb.update(1)
|
|
|
+ pb.set_description("{} out of {} blocks processed.".format(
|
|
|
+ cnt, num_blocks))
|
|
|
+
|
|
|
dst_data = None
|
|
|
logging.info("GeoTiff file saved in {}.".format(save_file))
|