|
@@ -26,12 +26,15 @@ class CDDataset(Dataset):
|
|
|
|
|
|
Args:
|
|
|
data_dir (str): 数据集所在的目录路径。
|
|
|
- file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
|
|
|
+ file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路径)。当`with_seg_labels`为
|
|
|
+ False(默认设置)时,文件中每一行应依次包含第一时相影像、第二时相影像以及变化检测标签的路径;当`with_seg_labels`为True时,
|
|
|
+ 文件中每一行应依次包含第一时相影像、第二时相影像、变化检测标签、第一时相建筑物标签以及第二时相建筑物标签的路径。
|
|
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。
|
|
|
transforms (paddlers.transforms): 数据集中每个样本的预处理/增强算子。
|
|
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。
|
|
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
|
|
|
with_seg_labels (bool, optional): 数据集中是否包含两个时相的语义分割标签。默认为False。
|
|
|
+ binarize_labels (bool, optional): 是否对数据集中的标签进行二值化操作。默认为False。
|
|
|
"""
|
|
|
|
|
|
def __init__(self,
|
|
@@ -41,7 +44,8 @@ class CDDataset(Dataset):
|
|
|
transforms=None,
|
|
|
num_workers='auto',
|
|
|
shuffle=False,
|
|
|
- with_seg_labels=False):
|
|
|
+ with_seg_labels=False,
|
|
|
+ binarize_labels=False):
|
|
|
super(CDDataset, self).__init__()
|
|
|
|
|
|
DELIMETER = ' '
|
|
@@ -55,9 +59,10 @@ class CDDataset(Dataset):
|
|
|
self.labels = list()
|
|
|
self.with_seg_labels = with_seg_labels
|
|
|
if self.with_seg_labels:
|
|
|
- num_items = 5 # 3+2
|
|
|
+ num_items = 5 # RGB1, RGB2, CD, Seg1, Seg2
|
|
|
else:
|
|
|
- num_items = 3
|
|
|
+ num_items = 3 # RGB1, RGB2, CD
|
|
|
+ self.binarize_labels = binarize_labels
|
|
|
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list
|
|
|
# 不要在此处分析label file
|
|
@@ -66,15 +71,15 @@ class CDDataset(Dataset):
|
|
|
for line in f:
|
|
|
item = line.strip()
|
|
|
self.labels.append(item)
|
|
|
-
|
|
|
+
|
|
|
with open(file_list, encoding=get_encoding(file_list)) as f:
|
|
|
for line in f:
|
|
|
items = line.strip().split(DELIMETER)
|
|
|
|
|
|
if len(items) != num_items:
|
|
|
- raise Exception("Line[{}] in file_list[{}] has an incorrect number of file paths.".format(
|
|
|
- line.strip(), file_list
|
|
|
- ))
|
|
|
+ raise Exception(
|
|
|
+ "Line[{}] in file_list[{}] has an incorrect number of file paths.".
|
|
|
+ format(line.strip(), file_list))
|
|
|
|
|
|
items = list(map(path_normalization, items))
|
|
|
if not all(map(is_pic, items)):
|
|
@@ -106,10 +111,11 @@ class CDDataset(Dataset):
|
|
|
item_dict = dict(
|
|
|
image_t1=full_path_im_t1,
|
|
|
image_t2=full_path_im_t2,
|
|
|
- mask=full_path_label
|
|
|
- )
|
|
|
+ mask=full_path_label)
|
|
|
if with_seg_labels:
|
|
|
- item_dict['aux_masks'] = [full_path_seg_label_t1, full_path_seg_label_t2]
|
|
|
+ item_dict['aux_masks'] = [
|
|
|
+ full_path_seg_label_t1, full_path_seg_label_t2
|
|
|
+ ]
|
|
|
|
|
|
self.file_list.append(item_dict)
|
|
|
|
|
@@ -120,15 +126,19 @@ class CDDataset(Dataset):
|
|
|
def __getitem__(self, idx):
|
|
|
sample = copy.deepcopy(self.file_list[idx])
|
|
|
outputs = self.transforms(sample)
|
|
|
-
|
|
|
+ if self.binarize_labels:
|
|
|
+ outputs = outputs[:2] + tuple(map(self._binarize, outputs[2:]))
|
|
|
return outputs
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.file_list)
|
|
|
|
|
|
+ def _binarize(self, mask, threshold=127):
|
|
|
+ return (mask > threshold).astype('int64')
|
|
|
+
|
|
|
|
|
|
class MaskType(IntEnum):
|
|
|
"""Enumeration of the mask types used in the change detection task."""
|
|
|
CD = 0
|
|
|
SEG_T1 = 1
|
|
|
- SEG_T2 = 2
|
|
|
+ SEG_T2 = 2
|