|
@@ -0,0 +1,351 @@
|
|
|
+# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import tempfile
|
|
|
+import unittest.mock as mock
|
|
|
+
|
|
|
+import cv2
|
|
|
+import paddle
|
|
|
+
|
|
|
+import paddlers as pdrs
|
|
|
+from testing_utils import CommonTest, run_script
|
|
|
+
|
|
|
+
|
|
|
+class TestPredictor(CommonTest):
|
|
|
+ MODULE = pdrs.tasks
|
|
|
+ TRAINER_NAME_TO_EXPORT_OPTS = {}
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def add_tests(cls):
|
|
|
+ def _test_predictor(trainer_name):
|
|
|
+ def _test_predictor_impl(self):
|
|
|
+ trainer_class = getattr(self.MODULE, trainer_name)
|
|
|
+ # Construct trainer with default parameters
|
|
|
+ trainer = trainer_class()
|
|
|
+ with tempfile.TemporaryDirectory() as td:
|
|
|
+ dynamic_model_dir = f"{td}/dynamic"
|
|
|
+ static_model_dir = f"{td}/static"
|
|
|
+ # HACK: BaseModel.save_model() requires BaseModel().optimizer to be set
|
|
|
+ optimizer = mock.Mock()
|
|
|
+ optimizer.state_dict.return_value = {'foo': 'bar'}
|
|
|
+ trainer.optimizer = optimizer
|
|
|
+ trainer.save_model(dynamic_model_dir)
|
|
|
+ export_cmd = f"python export_model.py --model_dir {dynamic_model_dir} --save_dir {static_model_dir} "
|
|
|
+ if trainer_name in self.TRAINER_NAME_TO_EXPORT_OPTS:
|
|
|
+ export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
|
|
|
+ trainer_name]
|
|
|
+ elif '_default' in self.TRAINER_NAME_TO_EXPORT_OPTS:
|
|
|
+ export_cmd += self.TRAINER_NAME_TO_EXPORT_OPTS[
|
|
|
+ '_default']
|
|
|
+ run_script(export_cmd, wd="../deploy/export")
|
|
|
+ # Construct predictor
|
|
|
+ # TODO: Test trt and mkl
|
|
|
+ predictor = pdrs.deploy.Predictor(
|
|
|
+ static_model_dir,
|
|
|
+ use_gpu=paddle.device.get_device().startswith('gpu'))
|
|
|
+ self.check_predictor(predictor, trainer)
|
|
|
+
|
|
|
+ return _test_predictor_impl
|
|
|
+
|
|
|
+ for trainer_name in cls.MODULE.__all__:
|
|
|
+ setattr(cls, 'test_' + trainer_name, _test_predictor(trainer_name))
|
|
|
+
|
|
|
+ return cls
|
|
|
+
|
|
|
+ def check_predictor(self, predictor, trainer):
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+ def check_dict_equal(self, dict_, expected_dict):
|
|
|
+ if isinstance(dict_, list):
|
|
|
+ self.assertIsInstance(expected_dict, list)
|
|
|
+ self.assertEqual(len(dict_), len(expected_dict))
|
|
|
+ for d1, d2 in zip(dict_, expected_dict):
|
|
|
+ self.check_dict_equal(d1, d2)
|
|
|
+ else:
|
|
|
+ assert isinstance(dict_, dict)
|
|
|
+ assert isinstance(expected_dict, dict)
|
|
|
+ self.assertEqual(dict_.keys(), expected_dict.keys())
|
|
|
+ for key in dict_.keys():
|
|
|
+ self.check_output_equal(dict_[key], expected_dict[key])
|
|
|
+
|
|
|
+
|
|
|
+@TestPredictor.add_tests
|
|
|
+class TestCDPredictor(TestPredictor):
|
|
|
+ MODULE = pdrs.tasks.change_detector
|
|
|
+ TRAINER_NAME_TO_EXPORT_OPTS = {
|
|
|
+ 'BIT': "--fixed_input_shape [1,3,256,256]",
|
|
|
+ '_default': "--fixed_input_shape [-1,3,256,256]"
|
|
|
+ }
|
|
|
+
|
|
|
+ def check_predictor(self, predictor, trainer):
|
|
|
+ t1_path = "data/ssmt/optical_t1.bmp"
|
|
|
+ t2_path = "data/ssmt/optical_t2.bmp"
|
|
|
+ single_input = (t1_path, t2_path)
|
|
|
+ num_inputs = 2
|
|
|
+ transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
+
|
|
|
+ # Expected failure
|
|
|
+ with self.assertRaises(ValueError):
|
|
|
+ predictor.predict(t1_path, transforms=transforms)
|
|
|
+
|
|
|
+ # Single input (file paths)
|
|
|
+ input_ = single_input
|
|
|
+ out_single_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ out_single_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_p, out_single_file_t)
|
|
|
+ out_single_file_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_file_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
|
|
+ out_single_file_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0],
|
|
|
+ out_single_file_list_t[0])
|
|
|
+
|
|
|
+ # Single input (ndarrays)
|
|
|
+ input_ = (cv2.imread(t1_path).astype('float32'),
|
|
|
+ cv2.imread(t2_path).astype('float32')
|
|
|
+ ) # Reuse the name `input_`
|
|
|
+ out_single_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_file_p)
|
|
|
+ out_single_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_array_t)
|
|
|
+ out_single_array_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_array_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
|
|
+ out_single_array_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0],
|
|
|
+ out_single_array_list_t[0])
|
|
|
+
|
|
|
+ if isinstance(trainer, pdrs.tasks.change_detector.BIT):
|
|
|
+ return
|
|
|
+
|
|
|
+ # Multiple inputs (file paths)
|
|
|
+ input_ = [single_input] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), num_inputs)
|
|
|
+ out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
|
|
+
|
|
|
+ # Multiple inputs (ndarrays)
|
|
|
+ input_ = [(cv2.imread(t1_path).astype('float32'), cv2.imread(t2_path)
|
|
|
+ .astype('float32'))] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), num_inputs)
|
|
|
+ out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
|
|
+
|
|
|
+
|
|
|
+@TestPredictor.add_tests
|
|
|
+class TestClasPredictor(TestPredictor):
|
|
|
+ MODULE = pdrs.tasks.classifier
|
|
|
+ TRAINER_NAME_TO_EXPORT_OPTS = {
|
|
|
+ '_default': "--fixed_input_shape [-1,3,256,256]"
|
|
|
+ }
|
|
|
+
|
|
|
+ def check_predictor(self, predictor, trainer):
|
|
|
+ single_input = "data/ssmt/optical_t1.bmp"
|
|
|
+ num_inputs = 2
|
|
|
+ transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
+ labels = list(range(2))
|
|
|
+ trainer.labels = labels
|
|
|
+ predictor._model.labels = labels
|
|
|
+
|
|
|
+ # Single input (file paths)
|
|
|
+ input_ = single_input
|
|
|
+ out_single_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ out_single_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_p, out_single_file_t)
|
|
|
+ out_single_file_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_file_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
|
|
+ out_single_file_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0],
|
|
|
+ out_single_file_list_t[0])
|
|
|
+
|
|
|
+ # Single input (ndarrays)
|
|
|
+ input_ = cv2.imread(single_input).astype(
|
|
|
+ 'float32') # Reuse the name `input_`
|
|
|
+ out_single_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_file_p)
|
|
|
+ out_single_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_array_t)
|
|
|
+ out_single_array_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_array_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
|
|
+ out_single_array_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0],
|
|
|
+ out_single_array_list_t[0])
|
|
|
+
|
|
|
+ # Multiple inputs (file paths)
|
|
|
+ input_ = [single_input] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), num_inputs)
|
|
|
+ out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
|
|
+ self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
|
|
+
|
|
|
+ # Multiple inputs (ndarrays)
|
|
|
+ input_ = [cv2.imread(single_input).astype('float32')
|
|
|
+ ] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), num_inputs)
|
|
|
+ out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
|
|
+ self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
|
|
+
|
|
|
+
|
|
|
+@TestPredictor.add_tests
|
|
|
+class TestDetPredictor(TestPredictor):
|
|
|
+ MODULE = pdrs.tasks.object_detector
|
|
|
+ TRAINER_NAME_TO_EXPORT_OPTS = {
|
|
|
+ '_default': "--fixed_input_shape [-1,3,256,256]"
|
|
|
+ }
|
|
|
+
|
|
|
+ def check_predictor(self, predictor, trainer):
|
|
|
+ single_input = "data/ssmt/optical_t1.bmp"
|
|
|
+ num_inputs = 2
|
|
|
+ transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
+ labels = list(range(80))
|
|
|
+ trainer.labels = labels
|
|
|
+ predictor._model.labels = labels
|
|
|
+
|
|
|
+ # Single input (file paths)
|
|
|
+ input_ = single_input
|
|
|
+ out_single_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ out_single_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_p, out_single_file_t)
|
|
|
+ out_single_file_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_file_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
|
|
+ out_single_file_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0],
|
|
|
+ out_single_file_list_t[0])
|
|
|
+
|
|
|
+ # Single input (ndarrays)
|
|
|
+ input_ = cv2.imread(single_input).astype(
|
|
|
+ 'float32') # Reuse the name `input_`
|
|
|
+ out_single_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_file_p)
|
|
|
+ out_single_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_array_t)
|
|
|
+ out_single_array_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_array_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
|
|
+ out_single_array_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0],
|
|
|
+ out_single_array_list_t[0])
|
|
|
+
|
|
|
+ # Single input (ndarrays)
|
|
|
+ input_ = cv2.imread(single_input).astype(
|
|
|
+ 'float32') # Reuse the name `input_`
|
|
|
+ out_single_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_file_p)
|
|
|
+ out_single_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_array_t)
|
|
|
+ out_single_array_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_array_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
|
|
+ out_single_array_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0],
|
|
|
+ out_single_array_list_t[0])
|
|
|
+
|
|
|
+ # Multiple inputs (file paths)
|
|
|
+ input_ = [single_input] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), num_inputs)
|
|
|
+ out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
|
|
+ self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
|
|
+
|
|
|
+ # Multiple inputs (ndarrays)
|
|
|
+ input_ = [cv2.imread(single_input).astype('float32')
|
|
|
+ ] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), num_inputs)
|
|
|
+ out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
|
|
+ self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|
|
|
+
|
|
|
+
|
|
|
+@TestPredictor.add_tests
|
|
|
+class TestSegPredictor(TestPredictor):
|
|
|
+ MODULE = pdrs.tasks.segmenter
|
|
|
+ TRAINER_NAME_TO_EXPORT_OPTS = {
|
|
|
+ '_default': "--fixed_input_shape [-1,3,256,256]"
|
|
|
+ }
|
|
|
+
|
|
|
+ def check_predictor(self, predictor, trainer):
|
|
|
+ single_input = "data/ssmt/optical_t1.bmp"
|
|
|
+ num_inputs = 2
|
|
|
+ transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()])
|
|
|
+
|
|
|
+ # Single input (file paths)
|
|
|
+ input_ = single_input
|
|
|
+ out_single_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ out_single_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_p, out_single_file_t)
|
|
|
+ out_single_file_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_file_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0], out_single_file_p)
|
|
|
+ out_single_file_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_file_list_p[0],
|
|
|
+ out_single_file_list_t[0])
|
|
|
+
|
|
|
+ # Single input (ndarrays)
|
|
|
+ input_ = cv2.imread(single_input).astype(
|
|
|
+ 'float32') # Reuse the name `input_`
|
|
|
+ out_single_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_file_p)
|
|
|
+ out_single_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_p, out_single_array_t)
|
|
|
+ out_single_array_list_p = predictor.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.assertEqual(len(out_single_array_list_p), 1)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0], out_single_array_p)
|
|
|
+ out_single_array_list_t = trainer.predict(
|
|
|
+ [input_], transforms=transforms)
|
|
|
+ self.check_dict_equal(out_single_array_list_p[0],
|
|
|
+ out_single_array_list_t[0])
|
|
|
+
|
|
|
+ # Multiple inputs (file paths)
|
|
|
+ input_ = [single_input] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_file_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), num_inputs)
|
|
|
+ out_multi_file_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_file_p), len(out_multi_file_t))
|
|
|
+ self.check_dict_equal(out_multi_file_p, out_multi_file_t)
|
|
|
+
|
|
|
+ # Multiple inputs (ndarrays)
|
|
|
+ input_ = [cv2.imread(single_input).astype('float32')
|
|
|
+ ] * num_inputs # Reuse the name `input_`
|
|
|
+ out_multi_array_p = predictor.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), num_inputs)
|
|
|
+ out_multi_array_t = trainer.predict(input_, transforms=transforms)
|
|
|
+ self.assertEqual(len(out_multi_array_p), len(out_multi_array_t))
|
|
|
+ self.check_dict_equal(out_multi_array_p, out_multi_array_t)
|